These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 25933330)

  • 1. Signature of anomalous exciton localization in the optical response of self-assembled organic nanotubes.
    Bloemsma EA; Vlaming SM; Malyshev VA; Knoester J
    Phys Rev Lett; 2015 Apr; 114(15):156804. PubMed ID: 25933330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exciton localization in tubular molecular aggregates: Size effects and optical response.
    Bondarenko AS; Jansen TLC; Knoester J
    J Chem Phys; 2020 May; 152(19):194302. PubMed ID: 33687267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disorder-induced exciton localization and violation of optical selection rules in supramolecular nanotubes.
    Vlaming SM; Bloemsma EA; Nietiadi ML; Knoester J
    J Chem Phys; 2011 Mar; 134(11):114507. PubMed ID: 21428632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Imaging of Exciton Transport in Tubular Porphyrin Aggregates by Ultrafast Microscopy.
    Wan Y; Stradomska A; Knoester J; Huang L
    J Am Chem Soc; 2017 May; 139(21):7287-7293. PubMed ID: 28480703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-dependent relaxation of excitons in tubular molecular aggregates: Fluorescence decay and stokes shift.
    Pugzlys A; Augulis R; van Loosdrecht PH; Didraga C; Malyshev VA; Knoester J
    J Phys Chem B; 2006 Oct; 110(41):20268-76. PubMed ID: 17034206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal broadening of the J-band in disordered linear molecular aggregates: a theoretical study.
    Heijs DJ; Malyshev VA; Knoester J
    J Chem Phys; 2005 Oct; 123(14):144507. PubMed ID: 16238407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental evidence for exciton scaling effects in self-assembled molecular wires.
    Lagoudakis PG; de Souza MM; Schindler F; Lupton JM; Feldmann J; Wenus J; Lidzey DG
    Phys Rev Lett; 2004 Dec; 93(25):257401. PubMed ID: 15697939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reclassifying exciton-phonon coupling in molecular aggregates: evidence of strong nonadiabatic coupling in oligothiophene crystals.
    Spano FC; Silvestri L; Spearman P; Raimondo L; Tavazzi S
    J Chem Phys; 2007 Nov; 127(18):184703. PubMed ID: 18020654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exciton spectra and the microscopic structure of self-assembled porphyrin nanotubes.
    Vlaming SM; Augulis R; Stuart MC; Knoester J; van Loosdrecht PH
    J Phys Chem B; 2009 Feb; 113(8):2273-83. PubMed ID: 19193042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization and coherent dynamics of excitons in the two-dimensional optical spectrum of molecular J-aggregates.
    Dijkstra AG; la Cour Jansen T; Knoester J
    J Chem Phys; 2008 Apr; 128(16):164511. PubMed ID: 18447463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of exciton-electron scattering in doped single-walled carbon nanotubes.
    Konabe S; Matsuda K; Okada S
    Phys Rev Lett; 2012 Nov; 109(18):187403. PubMed ID: 23215327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interplay between intrachain and interchain interactions in semiconducting polymer assemblies: the HJ-aggregate model.
    Yamagata H; Spano FC
    J Chem Phys; 2012 May; 136(18):184901. PubMed ID: 22583308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape of the Q band in the absorption spectra of porphyrin nanotubes: Vibronic coupling or exciton effects?
    Stradomska A; Knoester J
    J Chem Phys; 2010 Sep; 133(9):094701. PubMed ID: 20831327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical investigation of strong exciton localization in high Al composition AlxGa₁-xN alloys.
    Fan S; Qin Z; He C; Hou M; Wang X; Shen B; Li W; Wang W; Mao D; Jin P; Yan J; Dong P
    Opt Express; 2013 Oct; 21(21):24497-503. PubMed ID: 24150295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uniform exciton fluorescence from individual molecular nanotubes immobilized on solid substrates.
    Eisele DM; Knoester J; Kirstein S; Rabe JP; Vanden Bout DA
    Nat Nanotechnol; 2009 Oct; 4(10):658-63. PubMed ID: 19809457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge-transfer excitons at organic semiconductor surfaces and interfaces.
    Zhu XY; Yang Q; Muntwiler M
    Acc Chem Res; 2009 Nov; 42(11):1779-87. PubMed ID: 19378979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical spectra and localization of excitons in inhomogeneous helical cylindrical aggregates.
    Didraga C; Knoester J
    J Chem Phys; 2004 Dec; 121(21):10687-98. PubMed ID: 15549954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exciton-exciton correlations revealed by two-quantum, two-dimensional fourier transform optical spectroscopy.
    Stone KW; Turner DB; Gundogdu K; Cundiff ST; Nelson KA
    Acc Chem Res; 2009 Sep; 42(9):1452-61. PubMed ID: 19691277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.