These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 25933330)

  • 21. Nonlinear photoluminescence spectroscopy of carbon nanotubes with localized exciton states.
    Iwamura M; Akizuki N; Miyauchi Y; Mouri S; Shaver J; Gao Z; Cognet L; Lounis B; Matsuda K
    ACS Nano; 2014 Nov; 8(11):11254-60. PubMed ID: 25331628
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Weak exciton scattering in molecular nanotubes revealed by double-quantum two-dimensional electronic spectroscopy.
    Abramavicius D; Nemeth A; Milota F; Sperling J; Mukamel S; Kauffmann HF
    Phys Rev Lett; 2012 Feb; 108(6):067401. PubMed ID: 22401120
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low-temperature dynamics of weakly localized Frenkel excitons in disordered linear chains.
    Bednarz M; Malyshev VA; Knoester J
    J Chem Phys; 2004 Feb; 120(8):3827-40. PubMed ID: 15268548
    [TBL] [Abstract][Full Text] [Related]  

  • 24. One-dimensional exciton diffusion in perylene bisimide aggregates.
    Marciniak H; Li XQ; Würthner F; Lochbrunner S
    J Phys Chem A; 2011 Feb; 115(5):648-54. PubMed ID: 21192672
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temperature-dependent exciton dynamics in J-aggregates-when disorder plays a role.
    Kaiser TE; Scheblykin IG; Thomsson D; Würthner F
    J Phys Chem B; 2009 Dec; 113(48):15836-42. PubMed ID: 19754082
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heterogeneous exciton dynamics revealed by two-dimensional optical spectroscopy.
    Stiopkin I; Brixner T; Yang M; Fleming GR
    J Phys Chem B; 2006 Oct; 110(40):20032-7. PubMed ID: 17020391
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exciton-Exciton Annihilation Is Coherently Suppressed in H-Aggregates, but Not in J-Aggregates.
    Tempelaar R; Jansen TLC; Knoester J
    J Phys Chem Lett; 2017 Dec; 8(24):6113-6117. PubMed ID: 29190421
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chlorophyll J-aggregates: from bioinspired dye stacks to nanotubes, liquid crystals, and biosupramolecular electronics.
    Sengupta S; Würthner F
    Acc Chem Res; 2013 Nov; 46(11):2498-512. PubMed ID: 23865851
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Elastic exciton-exciton scattering in photoexcited carbon nanotubes.
    Nguyen DT; Voisin C; Roussignol P; Roquelet C; Lauret JS; Cassabois G
    Phys Rev Lett; 2011 Sep; 107(12):127401. PubMed ID: 22026798
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controlled formation of the two-dimensional TTBC J-aggregates in an aqueous solution.
    Birkan B; Gülen D; Ozçelik S
    J Phys Chem B; 2006 Jun; 110(22):10805-13. PubMed ID: 16771330
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Decoherence of excitons in multichromophore systems: thermal line broadening and destruction of superradiant emission.
    Heijs DJ; Malyshev VA; Knoester J
    Phys Rev Lett; 2005 Oct; 95(17):177402. PubMed ID: 16383866
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Excitons and disorder in molecular nanotubes: a 2D electronic spectroscopy study and first comparison to a microscopic model.
    Sperling J; Nemeth A; Hauer J; Abramavicius D; Mukamel S; Kauffmann HF; Milota F
    J Phys Chem A; 2010 Aug; 114(32):8179-89. PubMed ID: 20701329
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure vs. excitonic transitions in self-assembled porphyrin nanotubes and their effect on light absorption and scattering.
    Arteaga O; Canillas A; El-Hachemi Z; Crusats J; Ribó JM
    Nanoscale; 2015 Dec; 7(48):20435-41. PubMed ID: 26584333
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of environmental factors on the structure and spectroscopic response of 5'-DNA-porphyrin conjugates caused by changes in the porphyrin-porphyrin interactions.
    Mammana A; Pescitelli G; Asakawa T; Jockusch S; Petrovic AG; Monaco RR; Purrello R; Turro NJ; Nakanishi K; Ellestad GA; Balaz M; Berova N
    Chemistry; 2009 Nov; 15(44):11853-66. PubMed ID: 19844929
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exciton self-trapping in tetrafluoro-dimethyl-aminoacridine single crystals.
    Tavazzi S; Miozzo L; Papagni A; Raimondo L; Silvestri L; Spearman P; Camposeo A; Polo M; Pisignano D
    J Chem Phys; 2007 Jun; 126(23):234501. PubMed ID: 17600419
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exciton states and optical properties of carbon nanotubes.
    Ajiki H
    J Phys Condens Matter; 2012 Dec; 24(48):483001. PubMed ID: 23139202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strong coupling between surface plasmons and excitons in an organic semiconductor.
    Bellessa J; Bonnand C; Plenet JC; Mugnier J
    Phys Rev Lett; 2004 Jul; 93(3):036404. PubMed ID: 15323846
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The spectral signatures of Frenkel polarons in H- and J-aggregates.
    Spano FC
    Acc Chem Res; 2010 Mar; 43(3):429-39. PubMed ID: 20014774
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influences of Exciton Diffusion and Exciton-Exciton Annihilation on Photon Emission Statistics of Carbon Nanotubes.
    Ma X; Roslyak O; Duque JG; Pang X; Doorn SK; Piryatinski A; Dunlap DH; Htoon H
    Phys Rev Lett; 2015 Jul; 115(1):017401. PubMed ID: 26182119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vibronic coupling in J-aggregates and beyond: a direct means of determining the exciton coherence length from the photoluminescence spectrum.
    Spano FC; Yamagata H
    J Phys Chem B; 2011 May; 115(18):5133-43. PubMed ID: 20957993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.