BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 25933433)

  • 1. Protein Degradation of RNA Polymerase II-Association Factor 1(PAF1) Is Controlled by CNOT4 and 26S Proteasome.
    Sun HY; Kim N; Hwang CS; Yoo JY
    PLoS One; 2015; 10(5):e0125599. PubMed ID: 25933433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CNOT4 suppresses nonsmall cell lung cancer progression by promoting the degradation of PAF1.
    Zhang B; Zhao B; Han S; Chen S
    Mol Carcinog; 2023 Oct; 62(10):1563-1571. PubMed ID: 37493105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Paf1 complex is required for RNA polymerase II removal in response to DNA damage.
    Chen F; Liu B; Zhou H; Long J
    Proc Natl Acad Sci U S A; 2022 Oct; 119(40):e2207332119. PubMed ID: 36161924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ubiquitin-proteasome system regulation of a key gene regulatory factor, Paf1C.
    Barman P; Ferdoush J; Kaja A; Chakraborty P; Uprety B; Bhaumik R; Bhaumik R; Bhaumik SR
    Gene; 2024 Feb; 894():148004. PubMed ID: 37977317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ctr9, Rtf1, and Leo1 are components of the Paf1/RNA polymerase II complex.
    Mueller CL; Jaehning JA
    Mol Cell Biol; 2002 Apr; 22(7):1971-80. PubMed ID: 11884586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ubiquitin-Proteasome System Regulation of an Evolutionarily Conserved RNA Polymerase II-Associated Factor 1 Involved in Pancreatic Oncogenesis.
    Ferdoush J; Karmakar S; Barman P; Kaja A; Uprety B; Batra SK; Bhaumik SR
    Biochemistry; 2017 Nov; 56(46):6083-6086. PubMed ID: 29023102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of the Saccharomyces cerevisiae Paf1 complex from RNA polymerase II results in changes in its subnuclear localization.
    Porter SE; Penheiter KL; Jaehning JA
    Eukaryot Cell; 2005 Jan; 4(1):209-20. PubMed ID: 15643076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paf1 and Ctr9, core components of the PAF1 complex, maintain low levels of telomeric repeat containing RNA.
    Rodrigues J; Lydall D
    Nucleic Acids Res; 2018 Jan; 46(2):621-634. PubMed ID: 29145644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal Structure of the Core Module of the Yeast Paf1 Complex.
    Chen F; Liu B; Zeng J; Guo L; Ge X; Feng W; Li DF; Zhou H; Long J
    J Mol Biol; 2022 Jan; 434(2):167369. PubMed ID: 34852272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of nuclear import in protection of the vitamin D receptor from polyubiquitination and proteasome-mediated degradation.
    Peleg S; Nguyen CV
    J Cell Biochem; 2010 Jul; 110(4):926-34. PubMed ID: 20564192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CTR9, a component of PAF complex, controls elongation block at the c-Fos locus via signal-dependent regulation of chromatin-bound NELF dissociation.
    Yoo HS; Seo JH; Yoo JY
    PLoS One; 2013; 8(4):e61055. PubMed ID: 23593388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct interactions between the Paf1 complex and a cleavage and polyadenylation factor are revealed by dissociation of Paf1 from RNA polymerase II.
    Nordick K; Hoffman MG; Betz JL; Jaehning JA
    Eukaryot Cell; 2008 Jul; 7(7):1158-67. PubMed ID: 18469135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The SNW Domain of SKIP Is Required for Its Integration into the Spliceosome and Its Interaction with the Paf1 Complex in Arabidopsis.
    Li Y; Xia C; Feng J; Yang D; Wu F; Cao Y; Li L; Ma L
    Mol Plant; 2016 Jul; 9(7):1040-50. PubMed ID: 27130079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of the 26S proteasome blocks progesterone receptor-dependent transcription through failed recruitment of RNA polymerase II.
    Dennis AP; Lonard DM; Nawaz Z; O'Malley BW
    J Steroid Biochem Mol Biol; 2005 Mar; 94(4):337-46. PubMed ID: 15857753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A posttranscriptional role for the yeast Paf1-RNA polymerase II complex is revealed by identification of primary targets.
    Penheiter KL; Washburn TM; Porter SE; Hoffman MG; Jaehning JA
    Mol Cell; 2005 Oct; 20(2):213-23. PubMed ID: 16246724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ubiquitin-Dependent Turnover of MYC Antagonizes MYC/PAF1C Complex Accumulation to Drive Transcriptional Elongation.
    Jaenicke LA; von Eyss B; Carstensen A; Wolf E; Xu W; Greifenberg AK; Geyer M; Eilers M; Popov N
    Mol Cell; 2016 Jan; 61(1):54-67. PubMed ID: 26687678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. β-TrCP-mediated ubiquitination and degradation of liver-enriched transcription factor CREB-H.
    Cheng Y; Gao WW; Tang HM; Deng JJ; Wong CM; Chan CP; Jin DY
    Sci Rep; 2016 Mar; 6():23938. PubMed ID: 27029215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nuclear ubiquitin-proteasome system: visualization of proteasomes, protein aggregates, and proteolysis in the cell nucleus.
    von Mikecz A; Chen M; Rockel T; Scharf A
    Methods Mol Biol; 2008; 463():191-202. PubMed ID: 18951170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paf1 and Ctr9 subcomplex formation is essential for Paf1 complex assembly and functional regulation.
    Xie Y; Zheng M; Chu X; Chen Y; Xu H; Wang J; Zhou H; Long J
    Nat Commun; 2018 Sep; 9(1):3795. PubMed ID: 30228257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Paf1 complex physically and functionally associates with transcription elongation factors in vivo.
    Squazzo SL; Costa PJ; Lindstrom DL; Kumer KE; Simic R; Jennings JL; Link AJ; Arndt KM; Hartzog GA
    EMBO J; 2002 Apr; 21(7):1764-74. PubMed ID: 11927560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.