BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 25933497)

  • 1. ChREBP binding and histone modifications modulate hepatic expression of the Fasn gene in a metabolic syndrome rat model.
    Suzuki T; Muramatsu T; Morioka K; Goda T; Mochizuki K
    Nutrition; 2015 Jun; 31(6):877-83. PubMed ID: 25933497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histone modifications in FASN modulated by sterol regulatory element-binding protein 1c and carbohydrate responsive-element binding protein under insulin stimulation are related to NAFLD.
    Du X; Cai C; Yao J; Zhou Y; Yu H; Shen W
    Biochem Biophys Res Commun; 2017 Jan; 483(1):409-417. PubMed ID: 28027934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histone modifications in fatty acid synthase modulated by carbohydrate responsive element binding protein are associated with non‑alcoholic fatty liver disease.
    Cai C; Yu H; Huang G; Du X; Yu X; Zhou Y; Shen W
    Int J Mol Med; 2018 Sep; 42(3):1215-1228. PubMed ID: 29786745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bindings of ChREBP and SREBP1, and histone acetylation around the rat liver fatty acid synthase gene are associated with induction of the gene during the suckling-weaning transition.
    Morishita S; Mochizuki K; Goda T
    J Nutr Sci Vitaminol (Tokyo); 2014; 60(2):94-100. PubMed ID: 24975218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dietary supplementation with myo-inositol reduces high-fructose diet-induced hepatic ChREBP binding and acetylation of histones H3 and H4 on the Elovl6 gene in rats.
    Hibi M; Nakagawa T; Hayakawa T; Yanase E; Shimada M
    Nutr Res; 2021 Apr; 88():28-33. PubMed ID: 33743322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatment with myo-inositol attenuates binding of the carbohydrate-responsive element-binding protein to the ChREBP-β and FASN genes in rat nonalcoholic fatty liver induced by high-fructose diet.
    Shimada M; Ichigo Y; Shirouchi B; Takashima S; Inagaki M; Nakagawa T; Hayakawa T
    Nutr Res; 2019 Apr; 64():49-55. PubMed ID: 30802722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-fructose diet-induced hepatic expression of the Scd1 gene is associated with increased acetylation of histones H3 and H4 and the binding of ChREBP at the Scd1 promoter in rats.
    Shimada M; Hibi M; Nakagawa T; Hayakawa T; Field CJ
    Biomed Res; 2021; 42(2):85-88. PubMed ID: 33840688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans.
    Benhamed F; Denechaud PD; Lemoine M; Robichon C; Moldes M; Bertrand-Michel J; Ratziu V; Serfaty L; Housset C; Capeau J; Girard J; Guillou H; Postic C
    J Clin Invest; 2012 Jun; 122(6):2176-94. PubMed ID: 22546860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fructose containing sugars modulate mRNA of lipogenic genes ACC and FAS and protein levels of transcription factors ChREBP and SREBP1c with no effect on body weight or liver fat.
    Janevski M; Ratnayake S; Siljanovski S; McGlynn MA; Cameron-Smith D; Lewandowski P
    Food Funct; 2012 Feb; 3(2):141-9. PubMed ID: 22159273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. eIF6 coordinates insulin sensitivity and lipid metabolism by coupling translation to transcription.
    Brina D; Miluzio A; Ricciardi S; Clarke K; Davidsen PK; Viero G; Tebaldi T; Offenhäuser N; Rozman J; Rathkolb B; Neschen S; Klingenspor M; Wolf E; Gailus-Durner V; Fuchs H; Hrabe de Angelis M; Quattrone A; Falciani F; Biffo S
    Nat Commun; 2015 Sep; 6():8261. PubMed ID: 26383020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of rat hepatic L-pyruvate kinase promoter composition and activity by glucose, n-3 polyunsaturated fatty acids, and peroxisome proliferator-activated receptor-alpha agonist.
    Xu J; Christian B; Jump DB
    J Biol Chem; 2006 Jul; 281(27):18351-62. PubMed ID: 16644726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ChREBP: a glucose-activated transcription factor involved in the development of metabolic syndrome.
    Iizuka K; Horikawa Y
    Endocr J; 2008 Aug; 55(4):617-24. PubMed ID: 18490833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo lipogenesis in human fat and liver is linked to ChREBP-β and metabolic health.
    Eissing L; Scherer T; Tödter K; Knippschild U; Greve JW; Buurman WA; Pinnschmidt HO; Rensen SS; Wolf AM; Bartelt A; Heeren J; Buettner C; Scheja L
    Nat Commun; 2013; 4():1528. PubMed ID: 23443556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene-selective histone H3 acetylation in the absence of increase in global histone acetylation in liver of rats chronically fed alcohol.
    Park PH; Lim RW; Shukla SD
    Alcohol Alcohol; 2012; 47(3):233-9. PubMed ID: 22301686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The expression of endothelial nitric-oxide synthase is controlled by a cell-specific histone code.
    Fish JE; Matouk CC; Rachlis A; Lin S; Tai SC; D'Abreo C; Marsden PA
    J Biol Chem; 2005 Jul; 280(26):24824-38. PubMed ID: 15870070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of LXRα, ChREBP and Elovl6 in liver and white adipose tissue on medium- and long-chain fatty acid diet-induced insulin resistance.
    Sun H; Jiang T; Wang S; He B; Zhang Y; Piao D; Yu C; Wu N; Han P
    Diabetes Res Clin Pract; 2013 Dec; 102(3):183-92. PubMed ID: 24262945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. c-Myc is required for the CHREBP-dependent activation of glucose-responsive genes.
    Zhang P; Metukuri MR; Bindom SM; Prochownik EV; O'Doherty RM; Scott DK
    Mol Endocrinol; 2010 Jun; 24(6):1274-86. PubMed ID: 20382893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feeding rats dietary resistant starch reduces both the binding of ChREBP and the acetylation of histones on the Thrsp gene in the jejunum.
    Shimada M; Mochizuki K; Goda T
    J Agric Food Chem; 2011 Feb; 59(4):1464-9. PubMed ID: 21244091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ChREBP regulates fructose-induced glucose production independently of insulin signaling.
    Kim MS; Krawczyk SA; Doridot L; Fowler AJ; Wang JX; Trauger SA; Noh HL; Kang HJ; Meissen JK; Blatnik M; Kim JK; Lai M; Herman MA
    J Clin Invest; 2016 Nov; 126(11):4372-4386. PubMed ID: 27669460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HCF-1 Regulates De Novo Lipogenesis through a Nutrient-Sensitive Complex with ChREBP.
    Lane EA; Choi DW; Garcia-Haro L; Levine ZG; Tedoldi M; Walker S; Danial NN
    Mol Cell; 2019 Jul; 75(2):357-371.e7. PubMed ID: 31227231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.