These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 25933533)
1. Preparation and characterization of cross-linked carboxymethyl chitin porous membrane scaffold for biomedical applications. Zhao L; Wu Y; Chen S; Xing T Carbohydr Polym; 2015 Aug; 126():150-5. PubMed ID: 25933533 [TBL] [Abstract][Full Text] [Related]
2. Enhanced biological stability of collagen porous scaffolds by using amino acids as novel cross-linking bridges. Ma L; Gao C; Mao Z; Zhou J; Shen J Biomaterials; 2004 Jul; 25(15):2997-3004. PubMed ID: 14967532 [TBL] [Abstract][Full Text] [Related]
3. Thermal dehydration treatment and glutaraldehyde cross-linking to increase the biostability of collagen-chitosan porous scaffolds used as dermal equivalent. Ma L; Gao C; Mao Z; Shen J; Hu X; Han C J Biomater Sci Polym Ed; 2003; 14(8):861-74. PubMed ID: 14533863 [TBL] [Abstract][Full Text] [Related]
4. Microstructure and characteristic properties of gelatin/chitosan scaffold prepared by a combined freeze-drying/leaching method. Alizadeh M; Abbasi F; Khoshfetrat AB; Ghaleh H Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3958-67. PubMed ID: 23910302 [TBL] [Abstract][Full Text] [Related]
5. Physical and mechanical properties of cross-linked type I collagen scaffolds derived from bovine, porcine, and ovine tendons. Ghodbane SA; Dunn MG J Biomed Mater Res A; 2016 Nov; 104(11):2685-92. PubMed ID: 27325579 [TBL] [Abstract][Full Text] [Related]
6. Synergistic effect of carbodiimide and dehydrothermal crosslinking on acellular dermal matrix. Hu Y; Liu L; Dan W; Dan N; Gu Z; Yu X Int J Biol Macromol; 2013 Apr; 55():221-30. PubMed ID: 23352993 [TBL] [Abstract][Full Text] [Related]
7. Comparison of the properties of collagen-chitosan scaffolds after γ-ray irradiation and carbodiimide cross-linking. Chen Z; Du T; Tang X; Liu C; Li R; Xu C; Tian F; Du Z; Wu J J Biomater Sci Polym Ed; 2016 Jul; 27(10):937-53. PubMed ID: 27122297 [TBL] [Abstract][Full Text] [Related]
9. [Fabrication of a novel cartilage acellular matrix scaffold for cartilage tissue engineering]. Yang Q; Peng J; Lu S; Sun M; Huang J; Zhang L; Xu W; Zhao B; Sui X; Yao J; Yuan M Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Mar; 22(3):359-63. PubMed ID: 18396722 [TBL] [Abstract][Full Text] [Related]
10. Cytotoxic evaluation of biomechanically improved crosslinked ovine collagen on human dermal fibroblasts. Awang MA; Firdaus MA; Busra MB; Chowdhury SR; Fadilah NR; Wan Hamirul WK; Reusmaazran MY; Aminuddin MY; Ruszymah BH Biomed Mater Eng; 2014; 24(4):1715-24. PubMed ID: 24948455 [TBL] [Abstract][Full Text] [Related]
11. Development of D-lysine-assisted 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide-initiated cross linking of collagen matrix for design of scaffold. Krishnamoorthy G; Sehgal PK; Mandal AB; Sadulla S J Biomed Mater Res A; 2013 Apr; 101(4):1173-83. PubMed ID: 23090865 [TBL] [Abstract][Full Text] [Related]
12. Characterization of chitosan-gelatin scaffolds for dermal tissue engineering. Tseng HJ; Tsou TL; Wang HJ; Hsu SH J Tissue Eng Regen Med; 2013 Jan; 7(1):20-31. PubMed ID: 22034441 [TBL] [Abstract][Full Text] [Related]
13. Carbodiimide cross-linking counteracts the detrimental effects of gamma irradiation on the physical properties of collagen-hyaluronan sponges. Patel JM; Jackson RC; Schneider GL; Ghodbane SA; Dunn MG J Mater Sci Mater Med; 2018 May; 29(6):75. PubMed ID: 29808272 [TBL] [Abstract][Full Text] [Related]
14. Effects of different crosslinking methods on the properties of collagen-calcium phosphate composite materials. Kozłowska J; Sionkowska A Int J Biol Macromol; 2015 Mar; 74():397-403. PubMed ID: 25542169 [TBL] [Abstract][Full Text] [Related]
15. Fibrinogen-modified sodium alginate as a scaffold material for skin tissue engineering. Solovieva EV; Fedotov AY; Mamonov VE; Komlev VS; Panteleyev AA Biomed Mater; 2018 Jan; 13(2):025007. PubMed ID: 28972200 [TBL] [Abstract][Full Text] [Related]
16. Influence of carboxymethyl chitin on stability and biocompatibility of 3D nanohydroxyapatite/gelatin/carboxymethyl chitin composite for bone tissue engineering. Sagar N; Soni VP; Bellare JR J Biomed Mater Res B Appl Biomater; 2012 Apr; 100(3):624-36. PubMed ID: 22323281 [TBL] [Abstract][Full Text] [Related]
17. Fabrication and characterization of gelatin-based biocompatible porous composite scaffold for bone tissue engineering. Khan MN; Islam JM; Khan MA J Biomed Mater Res A; 2012 Nov; 100(11):3020-8. PubMed ID: 22707185 [TBL] [Abstract][Full Text] [Related]
18. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying. Grenier J; Duval H; Barou F; Lv P; David B; Letourneur D Acta Biomater; 2019 Aug; 94():195-203. PubMed ID: 31154055 [TBL] [Abstract][Full Text] [Related]
19. Fish collagen/alginate/chitooligosaccharides integrated scaffold for skin tissue regeneration application. Chandika P; Ko SC; Oh GW; Heo SY; Nguyen VT; Jeon YJ; Lee B; Jang CH; Kim G; Park WS; Chang W; Choi IW; Jung WK Int J Biol Macromol; 2015 Nov; 81():504-13. PubMed ID: 26306410 [TBL] [Abstract][Full Text] [Related]
20. Carbodimide cross-linked and biodegradation-controllable small intestinal submucosa sheets. Huang CC; Liu CY; Huang CY; Liu HW Biomed Mater Eng; 2014; 24(6):1959-67. PubMed ID: 25226892 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]