These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 25933545)

  • 1. Rheological behavior of cellulose nanowhisker suspension under magnetic field.
    Kim DH; Song YS
    Carbohydr Polym; 2015 Aug; 126():240-7. PubMed ID: 25933545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheology of nanocrystalline cellulose aqueous suspensions.
    Shafiei-Sabet S; Hamad WY; Hatzikiriakos SG
    Langmuir; 2012 Dec; 28(49):17124-33. PubMed ID: 23146090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and properties of aligned poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites.
    Ten E; Jiang L; Wolcott MP
    Carbohydr Polym; 2013 Jan; 92(1):206-13. PubMed ID: 23218284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscoelastic characteristics of all cellulose suspension and nanocomposite.
    Ahn SY; Song YS
    Carbohydr Polym; 2016 Oct; 151():119-129. PubMed ID: 27474550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of magnetic field alignment of cellulose whiskers on the mechanics of all-cellulose nanocomposites.
    Pullawan T; Wilkinson AN; Eichhorn SJ
    Biomacromolecules; 2012 Aug; 13(8):2528-36. PubMed ID: 22738281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological influence of cellulose nanoparticles (CNs) from cottonseed hulls on rheological properties of polyvinyl alcohol/CN suspensions.
    Zhou L; He H; Li MC; Song K; Cheng HN; Wu Q
    Carbohydr Polym; 2016 Nov; 153():445-454. PubMed ID: 27561516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of rheological properties of dissolved cellulose/microfibrillated cellulose blend suspensions on film forming.
    Saarikoski E; Rissanen M; Seppälä J
    Carbohydr Polym; 2015 Mar; 119():62-70. PubMed ID: 25563945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic optical film embedded with cellulose nanowhisker.
    Kim DH; Song YS
    Carbohydr Polym; 2015 Oct; 130():448-54. PubMed ID: 26076646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time.
    Benhamou K; Dufresne A; Magnin A; Mortha G; Kaddami H
    Carbohydr Polym; 2014 Jan; 99():74-83. PubMed ID: 24274481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates.
    Sèbe G; Ham-Pichavant F; Ibarboure E; Koffi AL; Tingaut P
    Biomacromolecules; 2012 Feb; 13(2):570-8. PubMed ID: 22260431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rheology of regenerated cellulose suspension and influence of sodium alginate.
    Jiang Y; De La Cruz JA; Ding L; Wang B; Feng X; Mao Z; Xu H; Sui X
    Int J Biol Macromol; 2020 Apr; 148():811-816. PubMed ID: 31962069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current Progress in Rheology of Cellulose Nanofibril Suspensions.
    Nechyporchuk O; Belgacem MN; Pignon F
    Biomacromolecules; 2016 Jul; 17(7):2311-20. PubMed ID: 27310523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a complex bone tissue culture system based on cellulose nanowhisker mechanical strain.
    Kim DS; Jung SM; Yoon GH; Lee HC; Shin HS
    Colloids Surf B Biointerfaces; 2014 Nov; 123():838-44. PubMed ID: 25454753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding viscoelastic behavior of hybrid nanocellulose film based on rheological and electrostatic observation in blended suspension.
    Kim M; Kim S; Han N; Lee S; Kim H
    Carbohydr Polym; 2023 Jan; 300():120218. PubMed ID: 36372470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Celluloses in an ionic liquid: the rheological properties of the solutions spanning the dilute and semidilute regimes.
    Kuang QL; Zhao JC; Niu YH; Zhang J; Wang ZG
    J Phys Chem B; 2008 Aug; 112(33):10234-40. PubMed ID: 18661932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheological properties of deionized Chinese ink.
    Kimura H; Nakayama Y; Tsuchida A; Okubo T
    Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):236-40. PubMed ID: 17254756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dispersions of nanocrystalline cellulose in aqueous polymer solutions: structure formation of colloidal rods.
    Boluk Y; Zhao L; Incani V
    Langmuir; 2012 Apr; 28(14):6114-23. PubMed ID: 22448630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the oxidation treatment on the production of cellulose nanofiber suspensions from Posidonia oceanica: The rheological aspect.
    Bettaieb F; Nechyporchuk O; Khiari R; Mhenni MF; Dufresne A; Belgacem MN
    Carbohydr Polym; 2015 Dec; 134():664-72. PubMed ID: 26428170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rheology and microstructure of aqueous suspensions of nanocrystalline cellulose rods.
    Xu Y; Atrens AD; Stokes JR
    J Colloid Interface Sci; 2017 Jun; 496():130-140. PubMed ID: 28214623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of hydrophilic and hydrophobic interactions on the rheological behavior and microstructure of a ternary cellulose acetate system.
    Kadla JF; Korehei R
    Biomacromolecules; 2010 Apr; 11(4):1074-81. PubMed ID: 20235573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.