These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 25933545)

  • 21. Heterogeneous flow kinematics of cellulose nanofibril suspensions under shear.
    Martoïa F; Perge C; Dumont PJ; Orgéas L; Fardin MA; Manneville S; Belgacem MN
    Soft Matter; 2015 Jun; 11(24):4742-55. PubMed ID: 25892568
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rheological properties of aqueous solution containing xanthan gum and cationic cellulose JR400.
    Li H; Chen R; Lu X; Hou W
    Carbohydr Polym; 2012 Oct; 90(3):1330-6. PubMed ID: 22939348
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cellulose nanowhiskers: preparation, characterization and cytotoxicity evaluation.
    Ni H; Zeng S; Wu J; Cheng X; Luo T; Wang W; Zeng W; Chen Y
    Biomed Mater Eng; 2012; 22(1-3):121-7. PubMed ID: 22766710
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation of electrorheological properties of biodegradable modified cellulose/corn oil suspensions.
    Tilki T; Yavuz M; Karabacak C; Cabuk M; Ulutürk M
    Carbohydr Res; 2010 Mar; 345(5):672-9. PubMed ID: 20116050
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena.
    Nechyporchuk O; Belgacem MN; Pignon F
    Carbohydr Polym; 2014 Nov; 112():432-9. PubMed ID: 25129764
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In situ rheometry of concentrated cellulose fibre suspensions and relationships with enzymatic hydrolysis.
    Nguyen TC; Anne-Archard D; Coma V; Cameleyre X; Lombard E; Binet C; Nouhen A; To KA; Fillaudeau L
    Bioresour Technol; 2013 Apr; 133():563-72. PubMed ID: 23466624
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rheology of polyaniline-dinonylnaphthalene disulfonic acid (DNNDSA) montmorillonite clay nanocomposites in the sol state: shear thinning versus pseudo-solid behavior.
    Garai A; Nandi AK
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1842-51. PubMed ID: 18572585
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Morphological, rheological and mechanical characterization of polypropylene nanocomposite blends.
    Rosales C; Contreras V; Matos M; Perera R; Villarreal N; García-López D; Pastor JM
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1762-74. PubMed ID: 18572576
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synergistic effect of glycerol and ionic strength on the rheological behavior of cellulose nanocrystals suspension system.
    Qin Y; Chang R; Ge S; Xiong L; Sun Q
    Int J Biol Macromol; 2017 Sep; 102():1073-1082. PubMed ID: 28476596
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tunable self-assembly of cellulose nanowhiskers and polyvinyl alcohol chains induced by surface tension torque.
    Mashkour M; Kimura T; Kimura F; Mashkour M; Tajvidi M
    Biomacromolecules; 2014 Jan; 15(1):60-5. PubMed ID: 24245587
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flow behavior and linear viscoelasticity of cellulose 1-allyl-3-methylimidazolium formate solutions.
    Lu F; Wang L; Ji X; Cheng B; Song J; Gou X
    Carbohydr Polym; 2014 Jan; 99():132-9. PubMed ID: 24274489
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterizing viscoelasticity of unhydrolyzed chicken sternal cartilage extract suspensions: Towards development of injectable therapeutics formulations.
    Hama B; Mahajan G; Kothapalli C
    J Mech Behav Biomed Mater; 2017 Aug; 72():90-101. PubMed ID: 28472711
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermoset nanocomposites from two-component waterborne polyurethanes and cellulose whiskers.
    Wu GM; Chen J; Huo SP; Liu GF; Kong ZW
    Carbohydr Polym; 2014 May; 105():207-13. PubMed ID: 24708971
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rheological characterization of Microcrystalline Cellulose/Sodiumcarboxymethyl cellulose hydrogels using a controlled stress rheometer: part I.
    Rudraraju VS; Wyandt CM
    Int J Pharm; 2005 Mar; 292(1-2):53-61. PubMed ID: 15725553
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modifying the flocculation of microfibrillated cellulose suspensions by soluble polysaccharides under conditions unfavorable to adsorption.
    Sorvari A; Saarinen T; Haavisto S; Salmela J; Vuoriluoto M; Seppälä J
    Carbohydr Polym; 2014 Jun; 106():283-92. PubMed ID: 24721080
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Viscoelastic behavior of cellulose acetate in a mixed solvent system.
    Appaw C; Gilbert RD; Khan SA; Kadla JF
    Biomacromolecules; 2007 May; 8(5):1541-7. PubMed ID: 17458930
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of rheological and structural properties of bacterial cellulose fibrils and whey protein biocomposites on electrosprayed food-grade particles.
    Paximada P; Kanavou E; Mandala IG
    Carbohydr Polym; 2020 Aug; 241():116319. PubMed ID: 32507207
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Water redispersible dried nanofibrillated cellulose by adding sodium chloride.
    Missoum K; Bras J; Belgacem MN
    Biomacromolecules; 2012 Dec; 13(12):4118-25. PubMed ID: 23140404
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rheological and hydrodynamic properties of cellulose acetate/ionic liquid solutions.
    Rudaz C; Budtova T
    Carbohydr Polym; 2013 Feb; 92(2):1966-71. PubMed ID: 23399245
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of NaCl on the rheological properties of suspension containing spray dried starch nanoparticles.
    Shi AM; Li D; Wang LJ; Adhikari B
    Carbohydr Polym; 2012 Nov; 90(4):1530-7. PubMed ID: 22944412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.