These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 25933545)
41. Synthesis of a microhydrogel composite from cellulose nanowhiskers and starch for drug delivery. Mauricio MR; da Costa PG; Haraguchi SK; Guilherme MR; Muniz EC; Rubira AF Carbohydr Polym; 2015 Jan; 115():715-22. PubMed ID: 25439953 [TBL] [Abstract][Full Text] [Related]
44. Gum tragacanth dispersions: Particle size and rheological properties affected by high-shear homogenization. Farzi M; Yarmand MS; Safari M; Emam-Djomeh Z; Mohammadifar MA Int J Biol Macromol; 2015 Aug; 79():433-9. PubMed ID: 25987462 [TBL] [Abstract][Full Text] [Related]
45. Pilot-Scale Production of Cellulosic Nanowhiskers With Similar Morphology to Cellulose Nanocrystals. Wang H; Zhu JJ; Ma Q; Agarwal UP; Gleisner R; Reiner R; Baez C; Zhu JY Front Bioeng Biotechnol; 2020; 8():565084. PubMed ID: 33015018 [TBL] [Abstract][Full Text] [Related]
47. Preparation and characterization of semi-IPNs of polycaprolactone/poly (acrylic acid)/cellulosic nanowhisker as artificial articular cartilage. Pourbashir S; Shahrousvand M; Ghaffari M Int J Biol Macromol; 2020 Jan; 142():298-310. PubMed ID: 31593724 [TBL] [Abstract][Full Text] [Related]
48. Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Cai J; Zhang L Biomacromolecules; 2006 Jan; 7(1):183-9. PubMed ID: 16398514 [TBL] [Abstract][Full Text] [Related]
49. Rheological and physical properties of gelatin suspensions containing cellulose nanofibers for potential coatings. Andrade RD; Skurtys O; Osorio F; Zuluaga R; Gañán P; Castro C Food Sci Technol Int; 2015 Jul; 21(5):332-41. PubMed ID: 24831643 [TBL] [Abstract][Full Text] [Related]
50. The Effect of Particle Shapes on the Field-Dependent Rheological Properties of Magnetorheological Greases. Mohamad N; ; Mazlan SA; Choi SB; Abdul Aziz SA; Sugimoto M Int J Mol Sci; 2019 Mar; 20(7):. PubMed ID: 30934679 [TBL] [Abstract][Full Text] [Related]
51. Rheological study of two-dimensional very anisometric colloidal particle suspensions: from shear-induced orientation to viscous dissipation. Philippe AM; Baravian C; Bezuglyy V; Angilella JR; Meneau F; Bihannic I; Michot LJ Langmuir; 2013 Apr; 29(17):5315-24. PubMed ID: 23544905 [TBL] [Abstract][Full Text] [Related]
52. Effect of hydrophilicity of polyaniline particles on their electrorheology: steady flow and dynamic behaviour. Stěnička M; Pavlínek V; Sáha P; Blinova NV; Stejskal J; Quadrat O J Colloid Interface Sci; 2010 Jun; 346(1):236-40. PubMed ID: 20227708 [TBL] [Abstract][Full Text] [Related]
53. Critical laminar shear-temperature effects on the nano- and mesoscale structure of a model fat and its relationship to oil binding and rheological properties. Acevedo NC; Block JM; Marangoni AG Faraday Discuss; 2012; 158():171-94; discussion 239-66. PubMed ID: 23234167 [TBL] [Abstract][Full Text] [Related]
54. Near-field magnetostatics and Néel-Brownian interactions mediated magneto-rheological characteristics of highly stable nano-ferrocolloids. Katiyar A; Dhar P; Das SK; Nandi T Soft Matter; 2015 Feb; 11(8):1614-27. PubMed ID: 25599522 [TBL] [Abstract][Full Text] [Related]
55. Rheology of Suspensions Thickened by Cellulose Nanocrystals. Pal R; Pattath K Nanomaterials (Basel); 2024 Jun; 14(13):. PubMed ID: 38998728 [TBL] [Abstract][Full Text] [Related]
56. Suspensions of vacuum-freeze dried starch nanoparticles: influence of NaCl on their rheological properties. Shi AM; Wang LJ; Li D; Adhikari B Carbohydr Polym; 2013 May; 94(2):782-90. PubMed ID: 23544633 [TBL] [Abstract][Full Text] [Related]
57. From colloidal spheres to nanofibrils: extensional flow properties of mineral pigment and mixtures with micro and nanofibrils under progressive double layer suppression. Dimic-Misic K; Hummel M; Paltakari J; Sixta H; Maloney T; Gane P J Colloid Interface Sci; 2015 May; 446():31-43. PubMed ID: 25656557 [TBL] [Abstract][Full Text] [Related]