These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 25933641)

  • 1. Enantiospecific Adsorption of Amino Acids on Naturally Chiral Cu{3,1,17}R&S Surfaces.
    Yun Y; Gellman AJ
    Langmuir; 2015 Jun; 31(22):6055-63. PubMed ID: 25933641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantiospecific equilibrium adsorption and chemistry of d-/l-proline mixtures on chiral and achiral Cu surfaces.
    Dutta S; Gellman AJ
    Chirality; 2020 Feb; 32(2):200-214. PubMed ID: 31762092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enantiospecific desorption of R- and S-propylene oxide from D- or L-lysine modified Cu(100) surfaces.
    Cheong WY; Gellman AJ
    Langmuir; 2012 Oct; 28(43):15251-62. PubMed ID: 23020648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantiospecific Adsorption and Decomposition of D- and L-Asp Mixtures on Cu(643)
    Dutta S; Gellman AJ
    Chimia (Aarau); 2018 Jun; 72(6):404-410. PubMed ID: 29941077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superenantioselective chiral surface explosions.
    Gellman AJ; Huang Y; Feng X; Pushkarev VV; Holsclaw B; Mhatre BS
    J Am Chem Soc; 2013 Dec; 135(51):19208-14. PubMed ID: 24261645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantioselective separation on a naturally chiral surface.
    Horvath JD; Koritnik A; Kamakoti P; Sholl DS; Gellman AJ
    J Am Chem Soc; 2004 Nov; 126(45):14988-94. PubMed ID: 15535728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing enantioselectivity on chirally modified Cu(110), Cu(100), and Cu(111) surfaces.
    Cheong WY; Huang Y; Dangaria N; Gellman AJ
    Langmuir; 2010 Nov; 26(21):16412-23. PubMed ID: 20973584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantiospecific adsorption of amino acids on hydroxylated quartz (10 1 0).
    Han JW; Sholl DS
    Phys Chem Chem Phys; 2010 Jul; 12(28):8024-32. PubMed ID: 20526493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantioselective surface chemistry of R-2-bromobutane on Cu(643)R&S and Cu(531)R&S.
    Rampulla DM; Francis AJ; Knight KS; Gellman AJ
    J Phys Chem B; 2006 Jun; 110(21):10411-20. PubMed ID: 16722747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enantiospecific adsorption of amino acids on hydroxylated quartz (0001).
    Han JW; Sholl DS
    Langmuir; 2009 Sep; 25(18):10737-45. PubMed ID: 19496574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enantioselective separation on naturally chiral metal surfaces: D,L-aspartic acid on Cu(3,1,17)(R&S) surfaces.
    Yun Y; Gellman AJ
    Angew Chem Int Ed Engl; 2013 Mar; 52(12):3394-7. PubMed ID: 23404826
    [No Abstract]   [Full Text] [Related]  

  • 12. Enantiospecific desorption of chiral compounds from chiral Cu(643) and achiral Cu(111) surfaces.
    Horvath JD; Gellman AJ
    J Am Chem Soc; 2002 Mar; 124(10):2384-92. PubMed ID: 11878996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-principles studies of chiral step reconstructions of Cu(100) by adsorbed glycine and alanine.
    Rankin RB; Sholl DS
    J Chem Phys; 2006 Feb; 124(7):74703. PubMed ID: 16497066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiral recognition in solution and the gas phase. Experimental and theoretical studies of aromatic D- and L-amino acid-Cu(II)-chiragen complexes.
    Seymour JL; Turecek F; Malkov AV; Kocovský P
    J Mass Spectrom; 2004 Sep; 39(9):1044-52. PubMed ID: 15386753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DFT study of the adsorption of D-(L-)cysteine on flat and chiral stepped gold surfaces.
    Fajín JL; Gomes JR; Cordeiro MN
    Langmuir; 2013 Jul; 29(28):8856-64. PubMed ID: 23772917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential-dependent studies on the interaction between phenylalanine-substituted bombesin fragments and roughened Ag, Au, and Cu electrode surfaces.
    Podstawka E; Niaura G; Proniewicz LM
    J Phys Chem B; 2010 Jan; 114(2):1010-29. PubMed ID: 20025214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic Diastereomerism on Chiral Surfaces.
    Matysik SC; Wales DJ; Jenkins SJ
    J Phys Chem C Nanomater Interfaces; 2023 Jan; 127(1):229-233. PubMed ID: 36660097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of attractive three-point interaction in enantioselective surface chemistry: stereospecific adsorption of serine on the intrinsically chiral Cu{531} surface.
    Eralp T; Ievins A; Shavorskiy A; Jenkins SJ; Held G
    J Am Chem Soc; 2012 Jun; 134(23):9615-21. PubMed ID: 22582880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of step faceting on the enantiospecific decomposition of aspartic acid on chiral Cu surfaces vicinal to Cu{111}.
    Reinicker AD; Therrien AJ; Lawton TJ; Ali R; Sykes EC; Gellman AJ
    Chem Commun (Camb); 2016 Sep; 52(75):11263-11266. PubMed ID: 27722525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-sensitive enantiospecific adsorption on naturally chiral Cu(hkl)
    Gellman AJ; Huang Y; Koritnik AJ; Horvath JD
    J Phys Condens Matter; 2017 Jan; 29(3):034001. PubMed ID: 27845932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.