These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 25933753)

  • 21. Local explicitly correlated second-order Møller-Plesset perturbation theory with pair natural orbitals.
    Tew DP; Helmich B; Hättig C
    J Chem Phys; 2011 Aug; 135(7):074107. PubMed ID: 21861556
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An efficient atomic orbital based second-order Møller-Plesset gradient program.
    Saebø S; Baker J; Wolinski K; Pulay P
    J Chem Phys; 2004 Jun; 120(24):11423-31. PubMed ID: 15268176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular gradient for second-order Møller-Plesset perturbation theory using the divide-expand-consolidate (DEC) scheme.
    Kristensen K; Jørgensen P; Jansík B; Kjærgaard T; Reine S
    J Chem Phys; 2012 Sep; 137(11):114102. PubMed ID: 22998244
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intermolecular potentials of the silane dimer calculated with Hartree-Fock theory, Møller-Plesset perturbation theory, and density functional theory.
    Pai CC; Li AH; Chao SD
    J Phys Chem A; 2007 Nov; 111(46):11922-9. PubMed ID: 17963367
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of explicitly localized molecular orbitals to electronic structure calculations.
    de Silva P; Makowski M; Korchowiec J
    Chimia (Aarau); 2012; 66(4):178-81. PubMed ID: 22613144
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Parallel and Low-Order Scaling Implementation of Hartree-Fock Exchange Using Local Density Fitting.
    Köppl C; Werner HJ
    J Chem Theory Comput; 2016 Jul; 12(7):3122-34. PubMed ID: 27267488
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRYSCOR: a program for the post-Hartree-Fock treatment of periodic systems.
    Pisani C; Schütz M; Casassa S; Usvyat D; Maschio L; Lorenz M; Erba A
    Phys Chem Chem Phys; 2012 Jun; 14(21):7615-28. PubMed ID: 22334044
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tensor factorizations of local second-order Møller-Plesset theory.
    Yang J; Kurashige Y; Manby FR; Chan GK
    J Chem Phys; 2011 Jan; 134(4):044123. PubMed ID: 21280703
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cluster-in-Molecule Local Correlation Approach for Periodic Systems.
    Wang Y; Ni Z; Li W; Li S
    J Chem Theory Comput; 2019 May; 15(5):2933-2943. PubMed ID: 30920828
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An efficient linear-scaling CCSD(T) method based on local natural orbitals.
    Rolik Z; Szegedy L; Ladjánszki I; Ladóczki B; Kállay M
    J Chem Phys; 2013 Sep; 139(9):094105. PubMed ID: 24028100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quadratically convergent algorithm for orbital optimization in the orbital-optimized coupled-cluster doubles method and in orbital-optimized second-order Møller-Plesset perturbation theory.
    Bozkaya U; Turney JM; Yamaguchi Y; Schaefer HF; Sherrill CD
    J Chem Phys; 2011 Sep; 135(10):104103. PubMed ID: 21932872
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals.
    Pinski P; Riplinger C; Valeev EF; Neese F
    J Chem Phys; 2015 Jul; 143(3):034108. PubMed ID: 26203015
    [TBL] [Abstract][Full Text] [Related]  

  • 33. General orbital invariant MP2-F12 theory.
    Werner HJ; Adler TB; Manby FR
    J Chem Phys; 2007 Apr; 126(16):164102. PubMed ID: 17477584
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Orbital-optimized third-order Møller-Plesset perturbation theory and its spin-component and spin-opposite scaled variants: application to symmetry breaking problems.
    Bozkaya U
    J Chem Phys; 2011 Dec; 135(22):224103. PubMed ID: 22168676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A localized basis that allows fast and accurate second-order Moller-Plesset calculations.
    Subotnik JE; Head-Gordon M
    J Chem Phys; 2005 Jan; 122(3):34109. PubMed ID: 15740194
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessing MP2 frozen natural orbitals in relativistic correlated electronic structure calculations.
    Yuan X; Visscher L; Gomes ASP
    J Chem Phys; 2022 Jun; 156(22):224108. PubMed ID: 35705406
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient and accurate treatment of weak pairs in local CCSD(T) calculations.
    Masur O; Usvyat D; Schütz M
    J Chem Phys; 2013 Oct; 139(16):164116. PubMed ID: 24182013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RI-MP2 Gradient Calculation of Large Molecules Using the Fragment Molecular Orbital Method.
    Ishikawa T; Kuwata K
    J Phys Chem Lett; 2012 Feb; 3(3):375-9. PubMed ID: 26285854
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Further investigations into a Laplace MP2 method using range separated Coulomb potential and orbital selective virtuals: Multipole correction, OSV extrapolation, and critical assessment.
    Demel O; Lecours MJ; Nooijen M
    J Chem Phys; 2023 Mar; 158(11):114120. PubMed ID: 36948803
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MPI/OpenMP hybrid parallel algorithm for resolution of identity second-order Møller-Plesset perturbation calculation of analytical energy gradient for massively parallel multicore supercomputers.
    Katouda M; Nakajima T
    J Comput Chem; 2017 Mar; 38(8):489-507. PubMed ID: 28133838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.