These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 25933890)

  • 1. A beam-membrane structure micromachined differential pressure flow sensor.
    Chen P; Zhao YL; Tian B; Li C; Li YY
    Rev Sci Instrum; 2015 Apr; 86(4):045004. PubMed ID: 25933890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel liquid flow sensor based on differential pressure method.
    Liu Z; Hong T; Zhang W; Li Z; Chen H
    Rev Sci Instrum; 2007 Jan; 78(1):015108. PubMed ID: 17503947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A MEMS SOI-based piezoresistive fluid flow sensor.
    Tian B; Li HF; Yang H; Song DL; Bai XW; Zhao YL
    Rev Sci Instrum; 2018 Feb; 89(2):025001. PubMed ID: 29495812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tungsten-rhenium thin film thermocouples for SiC-based ceramic matrix composites.
    Tian B; Zhang Z; Shi P; Zheng C; Yu Q; Jing W; Jiang Z
    Rev Sci Instrum; 2017 Jan; 88(1):015007. PubMed ID: 28147639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel target-type low pressure drop bidirectional optoelectronic air flow sensor for infant artificial ventilation: measurement principle and static calibration.
    Saccomandi P; Schena E; Silvestri S
    Rev Sci Instrum; 2011 Feb; 82(2):024301. PubMed ID: 21361616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micromachined lab-on-a-tube sensors for simultaneous brain temperature and cerebral blood flow measurements.
    Li C; Wu PM; Hartings JA; Wu Z; Cheyuo C; Wang P; LeDoux D; Shutter LA; Ramaswamy BR; Ahn CH; Narayan RK
    Biomed Microdevices; 2012 Aug; 14(4):759-68. PubMed ID: 22552801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling, design and validation of a novel microfluidic sensor for in-vitro isotonic measurement of microvessel contraction/dilation.
    Izzo I; Dario P
    Biomed Microdevices; 2007 Feb; 9(1):69-81. PubMed ID: 17106638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Application of a High Sensitivity Piezoresistive Pressure Sensor for Low Pressure Conditions.
    Yu H; Huang J
    Sensors (Basel); 2015 Sep; 15(9):22692-704. PubMed ID: 26371001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high sensitivity fiber optic macro-bend based gas flow rate transducer for low flow rates: theory, working principle, and static calibration.
    Schena E; Saccomandi P; Silvestri S
    Rev Sci Instrum; 2013 Feb; 84(2):024301. PubMed ID: 23464229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a bioprosthetic bicuspid venous valve hemodynamics: implications for mechanism of valve dynamics.
    Tien WH; Chen HY; Berwick ZC; Krieger J; Chambers S; Dabiri D; Kassab GS
    Eur J Vasc Endovasc Surg; 2014 Oct; 48(4):459-64. PubMed ID: 25150441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and numerical simulation of an optofluidic pressure sensor.
    Ebnali-Heidari M; Mansouri M; Mokhtarian S; Moravvej-Farshi MK
    Appl Opt; 2012 Jun; 51(16):3387-96. PubMed ID: 22695574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-acoustic-wave (SAW) flow sensor.
    Joshi SG
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(2):148-54. PubMed ID: 18267569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [An experimental study of the effect of structure sealing of infrared CO2 sensor on its accuracy].
    Huang G; Deng YB; Xu B; Wang WR; Xia LG; Chao ZG; Wang XX
    Space Med Med Eng (Beijing); 2005 Feb; 18(1):52-4. PubMed ID: 15852551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Annularly grooved membrane combined with rood beam piezoresistive pressure sensor for low pressure applications.
    Li C; Cordovilla F; Ocaña JL
    Rev Sci Instrum; 2017 Mar; 88(3):035002. PubMed ID: 28372406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a MEMS piezoresistive differential pressure sensor with small thermal hysteresis for air data modules.
    Song JW; Lee JS; An JE; Park CG
    Rev Sci Instrum; 2015 Jun; 86(6):065003. PubMed ID: 26133864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of a fluid-structure interaction numerical model for predicting flow transients in arteries.
    Kanyanta V; Ivankovic A; Karac A
    J Biomech; 2009 Aug; 42(11):1705-12. PubMed ID: 19482285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method for partitioned fluid-structure interaction computation of flow in arteries.
    Järvinen E; Råback P; Lyly M; Salenius JP
    Med Eng Phys; 2008 Sep; 30(7):917-23. PubMed ID: 18243762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Passive flow-rate regulators using pressure-dependent autonomous deflection of parallel membrane valves.
    Doh I; Cho YH
    Lab Chip; 2009 Jul; 9(14):2070-5. PubMed ID: 19568677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique.
    Battista L; Sciuto SA; Scorza A
    Rev Sci Instrum; 2013 Mar; 84(3):035005. PubMed ID: 23556844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A micromachined pressure sensor based on an array of microswitches.
    Park CS; Lee DW
    Rev Sci Instrum; 2010 May; 81(5):055103. PubMed ID: 20515168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.