These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 25933895)

  • 1. Influence of mechanical noise inside a scanning electron microscope.
    de Faria MG; Haddab Y; Le Gorrec Y; Lutz P
    Rev Sci Instrum; 2015 Apr; 86(4):045105. PubMed ID: 25933895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying and correcting scan noise and drift in the scanning transmission electron microscope.
    Jones L; Nellist PD
    Microsc Microanal; 2013 Aug; 19(4):1050-60. PubMed ID: 23673234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanomanipulation and nanofabrication with multi-probe scanning tunneling microscope: from individual atoms to nanowires.
    Qin S; Kim TH; Wang Z; Li AP
    Rev Sci Instrum; 2012 Jun; 83(6):063704. PubMed ID: 22755631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A tuning fork based wide range mechanical characterization tool with nanorobotic manipulators inside a scanning electron microscope.
    Acosta JC; Hwang G; Polesel-Maris J; Régnier S
    Rev Sci Instrum; 2011 Mar; 82(3):035116. PubMed ID: 21456797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in nanorobotic manipulation inside scanning electron microscopes.
    Shi C; Luu DK; Yang Q; Liu J; Chen J; Ru C; Xie S; Luo J; Ge J; Sun Y
    Microsyst Nanoeng; 2016; 2():16024. PubMed ID: 31057824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of thermal and acoustic noise interferences in low stiffness atomic force microscope cantilevers and characterization of their dynamic properties.
    Boudaoud M; Haddab Y; Le Gorrec Y; Lutz P
    Rev Sci Instrum; 2012 Jan; 83(1):013704. PubMed ID: 22299959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of image-distortion sources and magnetic-field measurement in scanning electron microscope (SEM).
    Płuska M; Czerwinski A; Ratajczak J; Katcki J; Oskwarek L; Rak R
    Micron; 2009 Jan; 40(1):46-50. PubMed ID: 18321720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of a high-NA light microscope in a scanning electron microscope.
    Zonnevylle AC; Van Tol RF; Liv N; Narvaez AC; Effting AP; Kruit P; Hoogenboom JP
    J Microsc; 2013 Oct; 252(1):58-70. PubMed ID: 23889193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A compact multipurpose nanomanipulator for use inside a scanning electron microscope.
    Heeres EC; Katan AJ; van Es MH; Beker AF; Hesselberth M; van der Zalm DJ; Oosterkamp TH
    Rev Sci Instrum; 2010 Feb; 81(2):023704. PubMed ID: 20192499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical characterization of nickel nanowires by using a customized atomic force microscope.
    Celik E; Guven I; Madenci E
    Nanotechnology; 2011 Apr; 22(15):155702. PubMed ID: 21389567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A modular designed ultra-high-vacuum spin-polarized scanning tunneling microscope with controllable magnetic fields for investigating epitaxial thin films.
    Wang K; Lin W; Chinchore AV; Liu Y; Smith AR
    Rev Sci Instrum; 2011 May; 82(5):053703. PubMed ID: 21639503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A low-temperature high resolution scanning tunneling microscope with a three-dimensional magnetic vector field operating in ultrahigh vacuum.
    Mashoff T; Pratzer M; Morgenstern M
    Rev Sci Instrum; 2009 May; 80(5):053702. PubMed ID: 19485511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental evaluation of environmental scanning electron microscopes at high chamber pressure.
    Fitzek H; Schroettner H; Wagner J; Hofer F; Rattenberger J
    J Microsc; 2015 Nov; 260(2):133-9. PubMed ID: 26173072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy.
    Lin W; Foley A; Alam K; Wang K; Liu Y; Chen T; Pak J; Smith AR
    Rev Sci Instrum; 2014 Apr; 85(4):043702. PubMed ID: 24784613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic imaging of Au-nanoparticles via scanning electron microscopy in a graphene wet cell.
    Yang W; Zhang Y; Hilke M; Reisner W
    Nanotechnology; 2015 Aug; 26(31):315703. PubMed ID: 26177916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beam transfer characteristics of a commercial environmental SEM and a low vacuum SEM.
    Danilatos G; Rattenberger J; Dracopoulos V
    J Microsc; 2011 May; 242(2):166-80. PubMed ID: 21118246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of a dynamic scanning force microscope for highest resolution imaging in ultrahigh vacuum.
    Torbrügge S; Lübbe J; Tröger L; Cranney M; Eguchi T; Hasegawa Y; Reichling M
    Rev Sci Instrum; 2008 Aug; 79(8):083701. PubMed ID: 19044351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomanipulation of biological samples using a compact atomic force microscope under scanning electron microscope observation.
    Iwata F; Mizuguchi Y; Ko H; Ushiki T
    J Electron Microsc (Tokyo); 2011 Dec; 60(6):359-66. PubMed ID: 22049270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of channel electron multipliers in an electron detector for low-voltage scanning electron microscopy.
    Hejna J
    J Microsc; 2008 Nov; 232(2):369-78. PubMed ID: 19017236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microgrinding of lensed fibers by means of a scanning-probe microscope setup.
    Yakunin S; Heitz J
    Appl Opt; 2009 Nov; 48(32):6172-7. PubMed ID: 19904313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.