These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 25934093)
1. Local temperature-sensitive mechanisms are important mediators of limb tissue hyperemia in the heat-stressed human at rest and during small muscle mass exercise. Chiesa ST; Trangmar SJ; Kalsi KK; Rakobowchuk M; Banker DS; Lotlikar MD; Ali L; González-Alonso J Am J Physiol Heart Circ Physiol; 2015 Jul; 309(2):H369-80. PubMed ID: 25934093 [TBL] [Abstract][Full Text] [Related]
2. Hemodynamic responses to heat stress in the resting and exercising human leg: insight into the effect of temperature on skeletal muscle blood flow. Pearson J; Low DA; Stöhr E; Kalsi K; Ali L; Barker H; González-Alonso J Am J Physiol Regul Integr Comp Physiol; 2011 Mar; 300(3):R663-73. PubMed ID: 21178127 [TBL] [Abstract][Full Text] [Related]
3. Blood temperature and perfusion to exercising and non-exercising human limbs. González-Alonso J; Calbet JA; Boushel R; Helge JW; Søndergaard H; Munch-Andersen T; van Hall G; Mortensen SP; Secher NH Exp Physiol; 2015 Oct; 100(10):1118-31. PubMed ID: 26268717 [TBL] [Abstract][Full Text] [Related]
4. Regional thermal hyperemia in the human leg: Evidence of the importance of thermosensitive mechanisms in the control of the peripheral circulation. Koch Esteves N; Gibson OR; Khir AW; González-Alonso J Physiol Rep; 2021 Aug; 9(15):e14953. PubMed ID: 34350727 [TBL] [Abstract][Full Text] [Related]
5. Temperature and blood flow distribution in the human leg during passive heat stress. Chiesa ST; Trangmar SJ; González-Alonso J J Appl Physiol (1985); 2016 May; 120(9):1047-58. PubMed ID: 26823344 [TBL] [Abstract][Full Text] [Related]
6. Heat-related changes in the velocity and kinetic energy of flowing blood influence the human heart's output during hyperthermia. Watanabe K; Koch Esteves N; Gibson OR; Akiyama K; Watanabe S; González-Alonso J J Physiol; 2024 May; 602(10):2227-2251. PubMed ID: 38690610 [TBL] [Abstract][Full Text] [Related]
7. Local heating, but not indirect whole body heating, increases human skeletal muscle blood flow. Heinonen I; Brothers RM; Kemppainen J; Knuuti J; Kalliokoski KK; Crandall CG J Appl Physiol (1985); 2011 Sep; 111(3):818-24. PubMed ID: 21680875 [TBL] [Abstract][Full Text] [Related]
8. Reductions in systemic and skeletal muscle blood flow and oxygen delivery limit maximal aerobic capacity in humans. González-Alonso J; Calbet JA Circulation; 2003 Feb; 107(6):824-30. PubMed ID: 12591751 [TBL] [Abstract][Full Text] [Related]
9. Lower limb hyperthermia augments functional hyperaemia during small muscle mass exercise similarly in trained elderly and young humans. Koch Esteves N; Khir AW; González-Alonso J Exp Physiol; 2023 Sep; 108(9):1154-1171. PubMed ID: 37409754 [TBL] [Abstract][Full Text] [Related]
10. Two weeks of muscle immobilization impairs functional sympatholysis but increases exercise hyperemia and the vasodilatory responsiveness to infused ATP. Mortensen SP; Mørkeberg J; Thaning P; Hellsten Y; Saltin B Am J Physiol Heart Circ Physiol; 2012 May; 302(10):H2074-82. PubMed ID: 22408019 [TBL] [Abstract][Full Text] [Related]
11. Restrictions in systemic and locomotor skeletal muscle perfusion, oxygen supply and VO2 during high-intensity whole-body exercise in humans. Mortensen SP; Damsgaard R; Dawson EA; Secher NH; González-Alonso J J Physiol; 2008 May; 586(10):2621-35. PubMed ID: 18372307 [TBL] [Abstract][Full Text] [Related]
12. Whole-body heat stress and exercise stimulate the appearance of platelet microvesicles in plasma with limited influence of vascular shear stress. Wilhelm EN; González-Alonso J; Chiesa ST; Trangmar SJ; Kalsi KK; Rakobowchuk M Physiol Rep; 2017 Nov; 5(21):. PubMed ID: 29122961 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of nitric oxide and prostaglandins, but not endothelial-derived hyperpolarizing factors, reduces blood flow and aerobic energy turnover in the exercising human leg. Mortensen SP; González-Alonso J; Damsgaard R; Saltin B; Hellsten Y J Physiol; 2007 Jun; 581(Pt 2):853-61. PubMed ID: 17347273 [TBL] [Abstract][Full Text] [Related]
14. Erythrocyte-dependent regulation of human skeletal muscle blood flow: role of varied oxyhemoglobin and exercise on nitrite, S-nitrosohemoglobin, and ATP. Dufour SP; Patel RP; Brandon A; Teng X; Pearson J; Barker H; Ali L; Yuen AH; Smolenski RT; González-Alonso J Am J Physiol Heart Circ Physiol; 2010 Dec; 299(6):H1936-46. PubMed ID: 20852046 [TBL] [Abstract][Full Text] [Related]
15. Whole body hyperthermia, but not skin hyperthermia, accelerates brain and locomotor limb circulatory strain and impairs exercise capacity in humans. Trangmar SJ; Chiesa ST; Kalsi KK; Secher NH; González-Alonso J Physiol Rep; 2017 Jan; 5(2):. PubMed ID: 28108645 [TBL] [Abstract][Full Text] [Related]
16. Mechanisms for the control of local tissue blood flow during thermal interventions: influence of temperature-dependent ATP release from human blood and endothelial cells. Kalsi KK; Chiesa ST; Trangmar SJ; Ali L; Lotlikar MD; González-Alonso J Exp Physiol; 2017 Feb; 102(2):228-244. PubMed ID: 27859767 [TBL] [Abstract][Full Text] [Related]
17. Haemodynamic responses to exercise, ATP infusion and thigh compression in humans: insight into the role of muscle mechanisms on cardiovascular function. González-Alonso J; Mortensen SP; Jeppesen TD; Ali L; Barker H; Damsgaard R; Secher NH; Dawson EA; Dufour SP J Physiol; 2008 May; 586(9):2405-17. PubMed ID: 18339690 [TBL] [Abstract][Full Text] [Related]
18. Partial neuromuscular blockade in humans enhances muscle blood flow during exercise independently of muscle oxygen uptake and acetylcholine receptor blockade. Hellsten Y; Krustrup P; Iaia FM; Secher NH; Bangsbo J Am J Physiol Regul Integr Comp Physiol; 2009 Apr; 296(4):R1106-12. PubMed ID: 19193948 [TBL] [Abstract][Full Text] [Related]
19. Peak skeletal muscle perfusion is maintained in patients with chronic heart failure when only a small muscle mass is exercised. Magnusson G; Kaijser L; Sylvén C; Karlberg KE; Isberg B; Saltin B Cardiovasc Res; 1997 Feb; 33(2):297-306. PubMed ID: 9074693 [TBL] [Abstract][Full Text] [Related]