BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

925 related articles for article (PubMed ID: 25934124)

  • 1. Target activation by regulatory RNAs in bacteria.
    Papenfort K; Vanderpool CK
    FEMS Microbiol Rev; 2015 May; 39(3):362-78. PubMed ID: 25934124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic interactions between the RNA chaperone Hfq, small regulatory RNAs, and mRNAs in live bacterial cells.
    Park S; Prévost K; Heideman EM; Carrier MC; Azam MS; Reyer MA; Liu W; Massé E; Fei J
    Elife; 2021 Feb; 10():. PubMed ID: 33616037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Phosphorolytic Exoribonucleases Polynucleotide Phosphorylase and RNase PH Stabilize sRNAs and Facilitate Regulation of Their mRNA Targets.
    Cameron TA; De Lay NR
    J Bacteriol; 2016 Dec; 198(24):3309-3317. PubMed ID: 27698082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Modular Genetic System for High-Throughput Profiling and Engineering of Multi-Target Small RNAs.
    Stimple SD; Lahiry A; Taris JE; Wood DW; Lease RA
    Methods Mol Biol; 2018; 1737():373-391. PubMed ID: 29484604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial Chaperone Protein Hfq Facilitates the Annealing of Sponge RNAs to Small Regulatory RNAs.
    Małecka EM; Sobańska D; Olejniczak M
    J Mol Biol; 2021 Nov; 433(23):167291. PubMed ID: 34624296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acidic Residues in the Hfq Chaperone Increase the Selectivity of sRNA Binding and Annealing.
    Panja S; Santiago-Frangos A; Schu DJ; Gottesman S; Woodson SA
    J Mol Biol; 2015 Nov; 427(22):3491-3500. PubMed ID: 26196441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polynucleotide phosphorylase promotes the stability and function of Hfq-binding sRNAs by degrading target mRNA-derived fragments.
    Cameron TA; Matz LM; Sinha D; De Lay NR
    Nucleic Acids Res; 2019 Sep; 47(16):8821-8837. PubMed ID: 31329973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translational regulation by bacterial small RNAs via an unusual Hfq-dependent mechanism.
    Azam MS; Vanderpool CK
    Nucleic Acids Res; 2018 Mar; 46(5):2585-2599. PubMed ID: 29294046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide profiling of Hfq-binding RNAs uncovers extensive post-transcriptional rewiring of major stress response and symbiotic regulons in Sinorhizobium meliloti.
    Torres-Quesada O; Reinkensmeier J; Schlüter JP; Robledo M; Peregrina A; Giegerich R; Toro N; Becker A; Jiménez-Zurdo JI
    RNA Biol; 2014; 11(5):563-79. PubMed ID: 24786641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hfq chaperone brings speed dating to bacterial sRNA.
    Santiago-Frangos A; Woodson SA
    Wiley Interdiscip Rev RNA; 2018 Jul; 9(4):e1475. PubMed ID: 29633565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of gene expression by small RNA.
    Fröhlich KS; Vogel J
    Curr Opin Microbiol; 2009 Dec; 12(6):674-82. PubMed ID: 19880344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial Small Regulatory RNAs and Hfq Protein.
    Murina VN; Nikulin AD
    Biochemistry (Mosc); 2015 Dec; 80(13):1647-54. PubMed ID: 26878571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and RNA-binding properties of the bacterial LSm protein Hfq.
    Sauer E
    RNA Biol; 2013 Apr; 10(4):610-8. PubMed ID: 23535768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Post-transcriptional gene regulation by an Hfq-independent small RNA in Caulobacter crescentus.
    Fröhlich KS; Förstner KU; Gitai Z
    Nucleic Acids Res; 2018 Nov; 46(20):10969-10982. PubMed ID: 30165530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cycling of RNAs on Hfq.
    Wagner EG
    RNA Biol; 2013 Apr; 10(4):619-26. PubMed ID: 23466677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into small RNA-dependent translational regulation in prokaryotes.
    Desnoyers G; Bouchard MP; Massé E
    Trends Genet; 2013 Feb; 29(2):92-8. PubMed ID: 23141721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small RNA-mediated regulation in bacteria: A growing palette of diverse mechanisms.
    Dutta T; Srivastava S
    Gene; 2018 May; 656():60-72. PubMed ID: 29501814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. sRNA Target Prediction Organizing Tool (SPOT) Integrates Computational and Experimental Data To Facilitate Functional Characterization of Bacterial Small RNAs.
    King AM; Vanderpool CK; Degnan PH
    mSphere; 2019 Jan; 4(1):. PubMed ID: 30700509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of polynucleotide phosphorylase in sRNA function in Escherichia coli.
    De Lay N; Gottesman S
    RNA; 2011 Jun; 17(6):1172-89. PubMed ID: 21527671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An overview of gene regulation in bacteria by small RNAs derived from mRNA 3' ends.
    Ponath F; Hör J; Vogel J
    FEMS Microbiol Rev; 2022 Sep; 46(5):. PubMed ID: 35388892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 47.