BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 25934360)

  • 1. Cancer therapy and replication stress: forks on the road to perdition.
    Kotsantis P; Jones RM; Higgs MR; Petermann E
    Adv Clin Chem; 2015; 69():91-138. PubMed ID: 25934360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MOF Suppresses Replication Stress and Contributes to Resolution of Stalled Replication Forks.
    Singh DK; Pandita RK; Singh M; Chakraborty S; Hambarde S; Ramnarain D; Charaka V; Ahmed KM; Hunt CR; Pandita TK
    Mol Cell Biol; 2018 Mar; 38(6):. PubMed ID: 29298824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EEPD1 Rescues Stressed Replication Forks and Maintains Genome Stability by Promoting End Resection and Homologous Recombination Repair.
    Wu Y; Lee SH; Williamson EA; Reinert BL; Cho JH; Xia F; Jaiswal AS; Srinivasan G; Patel B; Brantley A; Zhou D; Shao L; Pathak R; Hauer-Jensen M; Singh S; Kong K; Wu X; Kim HS; Beissbarth T; Gaedcke J; Burma S; Nickoloff JA; Hromas RA
    PLoS Genet; 2015 Dec; 11(12):e1005675. PubMed ID: 26684013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks.
    Kim TM; Son MY; Dodds S; Hu L; Hasty P
    Mutat Res; 2014; 766-767():66-72. PubMed ID: 25847274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks.
    Kim TM; Son MY; Dodds S; Hu L; Hasty P
    Mutat Res; 2014; 766-767():66-72. PubMed ID: 25773776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Cockayne Syndrome Group B Protein in Replication Stress: Implications for Cancer Therapy.
    Walker JR; Zhu XD
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of arrested replication forks by homologous recombination is error-prone.
    Iraqui I; Chekkal Y; Jmari N; Pietrobon V; Fréon K; Costes A; Lambert SA
    PLoS Genet; 2012; 8(10):e1002976. PubMed ID: 23093942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in understanding DNA processing and protection at stalled replication forks.
    Rickman K; Smogorzewska A
    J Cell Biol; 2019 Apr; 218(4):1096-1107. PubMed ID: 30670471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implications of ubiquitination and the maintenance of replication fork stability in cancer therapy.
    Xia D; Zhu X; Wang Y; Gong P; Su HS; Xu X
    Biosci Rep; 2023 Oct; 43(10):. PubMed ID: 37728310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interplay of replication checkpoints and repair proteins at stalled replication forks.
    Branzei D; Foiani M
    DNA Repair (Amst); 2007 Jul; 6(7):994-1003. PubMed ID: 17382606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replication fork instability and the consequences of fork collisions from rereplication.
    Alexander JL; Orr-Weaver TL
    Genes Dev; 2016 Oct; 30(20):2241-2252. PubMed ID: 27898391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maintenance of fork integrity at damaged DNA and natural pause sites.
    Tourrière H; Pasero P
    DNA Repair (Amst); 2007 Jul; 6(7):900-13. PubMed ID: 17379579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. More forks on the road to replication stress recovery.
    Allen C; Ashley AK; Hromas R; Nickoloff JA
    J Mol Cell Biol; 2011 Feb; 3(1):4-12. PubMed ID: 21278446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endonuclease EEPD1 Is a Gatekeeper for Repair of Stressed Replication Forks.
    Kim HS; Nickoloff JA; Wu Y; Williamson EA; Sidhu GS; Reinert BL; Jaiswal AS; Srinivasan G; Patel B; Kong K; Burma S; Lee SH; Hromas RA
    J Biol Chem; 2017 Feb; 292(7):2795-2804. PubMed ID: 28049724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A tough row to hoe: when replication forks encounter DNA damage.
    Patel DR; Weiss RS
    Biochem Soc Trans; 2018 Dec; 46(6):1643-1651. PubMed ID: 30514768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor cell death mediated by peptides that recognize branched intermediates of DNA replication and repair.
    Dey M; Patra S; Su LY; Segall AM
    PLoS One; 2013; 8(11):e78751. PubMed ID: 24244353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal separation of replication and recombination requires the intra-S checkpoint.
    Meister P; Taddei A; Vernis L; Poidevin M; Gasser SM; Baldacci G
    J Cell Biol; 2005 Feb; 168(4):537-44. PubMed ID: 15716375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous homologous recombination is induced by collapsed replication forks that are caused by endogenous DNA single-strand breaks.
    Saleh-Gohari N; Bryant HE; Schultz N; Parker KM; Cassel TN; Helleday T
    Mol Cell Biol; 2005 Aug; 25(16):7158-69. PubMed ID: 16055725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Replication fork progression during re-replication requires the DNA damage checkpoint and double-strand break repair.
    Alexander JL; Barrasa MI; Orr-Weaver TL
    Curr Biol; 2015 Jun; 25(12):1654-60. PubMed ID: 26051888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting Replication Stress Response Pathways to Enhance Genotoxic Chemo- and Radiotherapy.
    Nickoloff JA
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35897913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.