These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 25934449)

  • 1. An investigation of the carbon nanotube--Lipid interface and its impact upon pulmonary surfactant lipid function.
    Melbourne J; Clancy A; Seiffert J; Skepper J; Tetley TD; Shaffer MS; Porter A
    Biomaterials; 2015 Jul; 55():24-32. PubMed ID: 25934449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial organizations of gel phospholipid and cholesterol in bovine lung surfactant films.
    Nag K; Fritzen-Garcia M; Devraj R; Panda AK
    Langmuir; 2007 Apr; 23(8):4421-31. PubMed ID: 17341098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-walled carbon nanotubes (MWCNTs) transformed THP-1 macrophages into foam cells: Impact of pulmonary surfactant component dipalmitoylphosphatidylcholine.
    Lin J; Jiang Y; Luo Y; Guo H; Huang C; Peng J; Cao Y
    J Hazard Mater; 2020 Jun; 392():122286. PubMed ID: 32086094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of hydrophobic alkylated gold nanoparticles on the phase behavior of monolayers of DPPC and clinical lung surfactant.
    Tatur S; Badia A
    Langmuir; 2012 Jan; 28(1):628-39. PubMed ID: 22118426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholesterol modifies the properties of surface films of dipalmitoylphosphatidylcholine plus pulmonary surfactant-associated protein B or C spread or adsorbed at the air-water interface.
    Taneva S; Keough KM
    Biochemistry; 1997 Jan; 36(4):912-22. PubMed ID: 9020791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time investigation of lung surfactant respreading with surface vibrational spectroscopy.
    Ma G; Allen HC
    Langmuir; 2006 Dec; 22(26):11267-74. PubMed ID: 17154614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Langmuir monolayer of artificial pulmonary surfactant mixtures with an amphiphilic peptide at the air/water interface: comparison of new preparations with surfacten (Surfactant TA).
    Nakahara H; Lee S; Sugihara G; Chang CH; Shibata O
    Langmuir; 2008 Apr; 24(7):3370-9. PubMed ID: 18315015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lung surfactant dysfunction in tuberculosis: effect of mycobacterial tubercular lipids on dipalmitoylphosphatidylcholine surface activity.
    Chimote G; Banerjee R
    Colloids Surf B Biointerfaces; 2005 Nov; 45(3-4):215-23. PubMed ID: 16198543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of albumin and erythrocyte membranes on spread monolayers of lung surfactant lipids.
    Rachana R; Banerjee R
    Colloids Surf B Biointerfaces; 2006 Jun; 50(1):9-17. PubMed ID: 16650737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hysteresis behavior of amphiphilic model peptide in lung lipid monolayers at the air-water interface by an IRRAS measurement.
    Nakahara H; Dudek A; Nakamura Y; Lee S; Chang CH; Shibata O
    Colloids Surf B Biointerfaces; 2009 Jan; 68(1):61-7. PubMed ID: 18977123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulmonary surfactant model systems catch the specific interaction of an amphiphilic peptide with anionic phospholipid.
    Nakahara H; Lee S; Shibata O
    Biophys J; 2009 Feb; 96(4):1415-29. PubMed ID: 19217859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A structural study of interfacial phospholipid and lung surfactant layers by transmission electron microscopy after Blodgett sampling: influence of surface pressure and temperature.
    Tchoreloff P; Gulik A; Denizot B; Proust JE; Puisieux F
    Chem Phys Lipids; 1991 Sep; 59(2):151-65. PubMed ID: 1742808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delineation of the dynamic properties of individual lipid species in native and synthetic pulmonary surfactants.
    Farver S; Smith AN; Mills FD; Egri AG; Long JR
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt B):203-10. PubMed ID: 24853659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A direct test of the "squeeze-out" hypothesis of lung surfactant function. External reflection FT-IR at the air/water interface.
    Pastrana-Rios B; Flach CR; Brauner JW; Mautone AJ; Mendelsohn R
    Biochemistry; 1994 May; 33(17):5121-7. PubMed ID: 8172887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic surface properties of pulmonary surfactant proteins SP-B and SP-C and their mixtures with dipalmitoylphosphatidylcholine.
    Taneva SG; Keough KM
    Biochemistry; 1994 Dec; 33(49):14660-70. PubMed ID: 7993894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combinations of fluorescently labeled pulmonary surfactant proteins SP-B and SP-C in phospholipid films.
    Nag K; Taneva SG; Perez-Gil J; Cruz A; Keough KM
    Biophys J; 1997 Jun; 72(6):2638-50. PubMed ID: 9168039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic Force Microscopy Imaging of Adsorbed Pulmonary Surfactant Films.
    Xu L; Yang Y; Zuo YY
    Biophys J; 2020 Aug; 119(4):756-766. PubMed ID: 32702292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Langmuir-Blodgett films formed by continuously varying surface pressure. Characterization by IR spectroscopy and epifluorescence microscopy.
    Wang L; Cruz A; Flach CR; Pérez-Gil J; Mendelsohn R
    Langmuir; 2007 Apr; 23(9):4950-8. PubMed ID: 17388613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulmonary surfactant protein SP-A with phospholipids in spread monolayers at the air-water interface.
    Taneva S; McEachren T; Stewart J; Keough KM
    Biochemistry; 1995 Aug; 34(32):10279-89. PubMed ID: 7640284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phospholipid packing and hydration in pulmonary surfactant membranes and films as sensed by LAURDAN.
    Picardi MV; Cruz A; Orellana G; Pérez-Gil J
    Biochim Biophys Acta; 2011 Mar; 1808(3):696-705. PubMed ID: 21126510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.