These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 25935041)

  • 1. Signal Quality Assessment Model for Wearable EEG Sensor on Prediction of Mental Stress.
    Hu B; Peng H; Zhao Q; Hu B; Majoe D; Zheng F; Moore P
    IEEE Trans Nanobioscience; 2015 Jul; 14(5):553-61. PubMed ID: 25935041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic identification and removal of ocular artifacts in EEG--improved adaptive predictor filtering for portable applications.
    Zhao Q; Hu B; Shi Y; Li Y; Moore P; Sun M; Peng H
    IEEE Trans Nanobioscience; 2014 Jun; 13(2):109-17. PubMed ID: 24802943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of ocular artifacts in EEG--an improved approach combining DWT and ANC for portable applications.
    Peng H; Hu B; Shi Q; Ratcliffe M; Zhao Q; Qi Y; Gao G
    IEEE J Biomed Health Inform; 2013 May; 17(3):600-7. PubMed ID: 24592462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wearable electroencephalography. What is it, why is it needed, and what does it entail?
    Casson A; Yates D; Smith S; Duncan J; Rodriguez-Villegas E
    IEEE Eng Med Biol Mag; 2010; 29(3):44-56. PubMed ID: 20659857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of an Integrated System of Wearable Physiological Sensors for Stress Monitoring in Working Environments by Using Biological Markers.
    Betti S; Lova RM; Rovini E; Acerbi G; Santarelli L; Cabiati M; Del Ry S; Cavallo F
    IEEE Trans Biomed Eng; 2018 Aug; 65(8):1748-1758. PubMed ID: 29989933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Continuously Updated, Computationally Efficient Stress Recognition Framework Using Electroencephalogram (EEG) by Applying Online Multitask Learning Algorithms (OMTL).
    Jebelli H; Mahdi Khalili M; Lee S
    IEEE J Biomed Health Inform; 2019 Sep; 23(5):1928-1939. PubMed ID: 30235150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitigation of ocular artifacts for EEG signal using improved earth worm optimization-based neural network and lifting wavelet transform.
    Prasad DS; Chanamallu SR; Prasad KS
    Comput Methods Biomech Biomed Engin; 2021 Apr; 24(5):551-578. PubMed ID: 33245687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of motion artifact rejection due to active electrodes and driven-right-leg circuit in spike detection algorithms.
    Nonclercq A; Mathys P
    IEEE Trans Biomed Eng; 2010 Nov; 57(11):. PubMed ID: 20615805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wearable, wireless EEG solutions in daily life applications: what are we missing?
    Mihajlovic V; Grundlehner B; Vullers R; Penders J
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):6-21. PubMed ID: 25486653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EEG sensor based classification for assessing psychological stress.
    Begum S; Barua S
    Stud Health Technol Inform; 2013; 189():83-8. PubMed ID: 23739362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. myBrain: a novel EEG embedded system for epilepsy monitoring.
    Pinho F; Cerqueira J; Correia J; Sousa N; Dias N
    J Med Eng Technol; 2017 Oct; 41(7):564-585. PubMed ID: 28994627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Filtering and thresholding the analytic signal envelope in order to improve peak and spike noise reduction in EEG signals.
    Melia U; Clariá F; Vallverdú M; Caminal P
    Med Eng Phys; 2014 Apr; 36(4):547-53. PubMed ID: 24365255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Comparison of digital filter and wavelet transform for extracting electroencephalogram rhythm].
    Xie T; Pei J; Jia C; Chen S; Qiao D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Aug; 26(4):743-7. PubMed ID: 19813601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A high-performance seizure detection algorithm based on Discrete Wavelet Transform (DWT) and EEG.
    Chen D; Wan S; Xiang J; Bao FS
    PLoS One; 2017; 12(3):e0173138. PubMed ID: 28278203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved ballistocardiac artifact removal from the electroencephalogram recorded in fMRI.
    Kim KH; Yoon HW; Park HW
    J Neurosci Methods; 2004 May; 135(1-2):193-203. PubMed ID: 15020103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and evaluation of an ambulatory stress monitor based on wearable sensors.
    Choi J; Ahmed B; Gutierrez-Osuna R
    IEEE Trans Inf Technol Biomed; 2012 Mar; 16(2):279-86. PubMed ID: 21965215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation of EEG and ECG components based on wavelet shrinkage and variable cosine window.
    Sakai M; Okuyama Y; Wei D
    J Med Eng Technol; 2012 Feb; 36(2):135-43. PubMed ID: 22268999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artifacts in wearable photoplethysmographs during daily life motions and their reduction with least mean square based active noise cancellation method.
    Han H; Kim J
    Comput Biol Med; 2012 Apr; 42(4):387-93. PubMed ID: 22206810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance-power consumption tradeoff in wearable epilepsy monitoring systems.
    Imtiaz SA; Logesparan L; Rodriguez-Villegas E
    IEEE J Biomed Health Inform; 2015 May; 19(3):1019-1028. PubMed ID: 25069131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient block processing of long duration biotelemetric brain data for health care monitoring.
    Soumya I; Rahman MZ; Reddy DV; Lay-Ekuakille A
    Rev Sci Instrum; 2015 Mar; 86(3):035003. PubMed ID: 25832268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.