These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 25935051)

  • 1. Imitation of Dynamic Walking With BSN for Humanoid Robot.
    Teachasrisaksakul K; Zhang ZQ; Yang GZ; Lo B
    IEEE J Biomed Health Inform; 2015 May; 19(3):794-802. PubMed ID: 25935051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot.
    Or J
    Neural Netw; 2010 Apr; 23(3):452-60. PubMed ID: 20031370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Humanoid robot Lola: design and walking control.
    Buschmann T; Lohmeier S; Ulbrich H
    J Physiol Paris; 2009; 103(3-5):141-8. PubMed ID: 19665558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and control of a pneumatic musculoskeletal biped robot.
    Zang X; Liu Y; Liu X; Zhao J
    Technol Health Care; 2016 Apr; 24 Suppl 2():S443-54. PubMed ID: 27163303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic.
    Li TH; Su YT; Lai SW; Hu JJ
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):736-48. PubMed ID: 21095871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foot placement modification for a biped humanoid robot with narrow feet.
    Hashimoto K; Hattori K; Otani T; Lim HO; Takanishi A
    ScientificWorldJournal; 2014; 2014():259570. PubMed ID: 24592154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-Phase Joint-Angle Trajectory Generation Inspired by Dog Motion for Control of Quadruped Robot.
    Choi J
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a wireless anchoring and extending micro robot system for gastrointestinal tract.
    Lin W; Shi Y; Jia Z; Yan G
    Int J Med Robot; 2013 Jun; 9(2):167-79. PubMed ID: 22407849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Horse-like walking, trotting, and galloping derived from kinematic Motion Primitives (kMPs) and their application to walk/trot transitions in a compliant quadruped robot.
    Moro FL; Spröwitz A; Tuleu A; Vespignani M; Tsagarakis NG; Ijspeert AJ; Caldwell DG
    Biol Cybern; 2013 Jun; 107(3):309-20. PubMed ID: 23463501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots.
    Nassour J; Hénaff P; Benouezdou F; Cheng G
    Biol Cybern; 2014 Jun; 108(3):291-303. PubMed ID: 24570353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motion Similarity Evaluation between Human and a Tri-Co Robot during Real-Time Imitation with a Trajectory Dynamic Time Warping Model.
    Gong L; Chen B; Xu W; Liu C; Li X; Zhao Z; Zhao L
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Omnidirectional Walking Pattern Generator Combining Virtual Constraints and Preview Control for Humanoid Robots.
    Ruscelli F; Laurenzi A; Mingo Hoffman E; Tsagarakis NG
    Front Robot AI; 2021; 8():660004. PubMed ID: 34277715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Human Walking Balance Controller Based on COM-ZMP Model of Humanoid Robot.
    Yoshikawa T
    Front Robot AI; 2022; 9():757630. PubMed ID: 35280957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Walking biped humanoids that perform manual labour.
    Hirukawa H
    Philos Trans A Math Phys Eng Sci; 2007 Jan; 365(1850):65-77. PubMed ID: 17148050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Robust Balance-Control Framework for the Terrain-Blind Bipedal Walking of a Humanoid Robot on Unknown and Uneven Terrain.
    Joe HM; Oh JH
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A reflexive neural network for dynamic biped walking control.
    Geng T; Porr B; Wörgötter F
    Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems.
    Mikolajczyk T; Mikołajewska E; Al-Shuka HFN; Malinowski T; Kłodowski A; Pimenov DY; Paczkowski T; Hu F; Giasin K; Mikołajewski D; Macko M
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gait Optimization Method for Humanoid Robots Based on Parallel Comprehensive Learning Particle Swarm Optimizer Algorithm.
    Tao C; Xue J; Zhang Z; Cao F; Li C; Gao H
    Front Neurorobot; 2020; 14():600885. PubMed ID: 33519412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Investigations into Using Motion Capture State Feedback for Real-Time Control of a Humanoid Robot.
    Popescu M; Mronga D; Bergonzani I; Kumar S; Kirchner F
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The experimental humanoid robot H7: a research platform for autonomous behaviour.
    Nishiwaki K; Kuffner J; Kagami S; Inaba M; Inoue H
    Philos Trans A Math Phys Eng Sci; 2007 Jan; 365(1850):79-107. PubMed ID: 17148051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.