BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 25935140)

  • 1. Effects of tannin-rich host plants on the infection and establishment of the entomopathogenic nematode Heterorhabditis bacteriophora.
    Glazer I; Salame L; Dvash L; Muklada H; Azaizeh H; Mreny R; Markovics A; Landau S
    J Invertebr Pathol; 2015 Jun; 128():31-6. PubMed ID: 25935140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethanolic extracts of Inula viscosa, Salix alba and Quercus calliprinos, negatively affect the development of the entomopathogenic nematode, Heterorhabditis bacteriophora - A model to compare gastro-intestinal nematodes developmental effect.
    Santhi VS; Salame L; Dvash L; Muklada H; Azaizeh H; Mreny R; Awwad S; Markovics A; Landau SY; Glazer I
    J Invertebr Pathol; 2017 May; 145():39-44. PubMed ID: 28300600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can an entomopathogenic nematode serve, as proxy for strongyles, in assessing the anthelmintic effects of phenolic compounds?
    Landau SY; Santhi VS; Glazer I; Salame L; Muklada H; Haj-Zaroubi M; Awwad S; Markovics A; Azaizeh H
    Exp Parasitol; 2020 Feb; 209():107811. PubMed ID: 31809705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity of phenolic compounds to entomopathogenic nematodes: A case study with Heterorhabditis bacteriophora exposed to lentisk (Pistacia lentiscus) extracts and their chemical components.
    Santhi VS; Salame L; Muklada H; Azaizeh H; Haj-Zaroubi M; Awwad S; Landau SY; Glazer I
    J Invertebr Pathol; 2019 Jan; 160():43-53. PubMed ID: 30528637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of the koinobiont parasitoid Microplitis rufiventris of the cotton leafworm, Spodoptera littoralis, with two entomopathogenic rhabditids, Heterorhabditis bacteriophora and Steinernema carpocapsae.
    Atwa AA; Hegazi EM; Khafagi WE; El-Aziz GM
    J Insect Sci; 2013; 13():84. PubMed ID: 24219656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compatibility of entomopathogenic nematodes with fipronil.
    García del Pino F; Jové M
    J Helminthol; 2005 Dec; 79(4):333-7. PubMed ID: 16336717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of the host cadaver on survival and infectivity of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) under desiccating conditions.
    Perez EE; Lewis EE; Shapiro-Ilan DI
    J Invertebr Pathol; 2003 Feb; 82(2):111-8. PubMed ID: 12623311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecological characterisation of the Colombian entomopathogenic nematode Heterorhabditis sp. SL0708.
    Mejia-Torres MC; Sáenz A
    Braz J Biol; 2013 May; 73(2):239-43. PubMed ID: 23917550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of insect cadaver desiccation and soil water potential during rehydration on entomopathogenic nematode (Rhabditida: Steinernematidae and Heterorhabditidae) production and virulence.
    Spence KO; Stevens GN; Arimoto H; Ruiz-Vega J; Kaya HK; Lewis EE
    J Invertebr Pathol; 2011 Feb; 106(2):268-73. PubMed ID: 21047513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid age-related changes in infection behavior of entomopathogenic nematodes.
    Yoder CA; Grewal PS; Taylor RA
    J Parasitol; 2004 Dec; 90(6):1229-34. PubMed ID: 15715211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of four tanniferous plant extracts on the in vitro exsheathment of third-stage larvae of parasitic nematodes.
    Bahuaud D; Martinez-Ortiz de Montellano C; Chauveau S; Prevot F; Torres-Acosta F; Fouraste I; Hoste H
    Parasitology; 2006 Apr; 132(Pt 4):545-54. PubMed ID: 16388690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the change in energy reserves on the entomopathogenic nematode efficacy.
    El-Assal FM; El-Lakwah SF; Hasheesh WS; El-Mahdi M
    J Egypt Soc Parasitol; 2008 Dec; 38(3):929-44. PubMed ID: 19209775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Susceptibility of the boll weevil to Steinernema riobrave and other entomopathogenic nematodes.
    Enrique Cabanillas H
    J Invertebr Pathol; 2003 Mar; 82(3):188-97. PubMed ID: 12676555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tolerance of the mealworm beetle, Tenebrio molitor, to an entomopathogenic nematode, Steinernema feltiae, at two infection foci, the intestine and the hemocoel.
    Roy MC; Kim Y
    J Invertebr Pathol; 2020 Jul; 174():107428. PubMed ID: 32553640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased Efficacy of Entomopathogenic Nematode-Insecticide Combinations Against Holotrichia oblita (Coleoptera: Scarabaeidae).
    Guo W; Yan X; Zhao G; Han R
    J Econ Entomol; 2017 Feb; 110(1):41-51. PubMed ID: 28017929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of candidate infection genes from the model entomopathogenic nematode Heterorhabditis bacteriophora.
    Vadnal J; Ratnappan R; Keaney M; Kenney E; Eleftherianos I; O'Halloran D; Hawdon JM
    BMC Genomics; 2017 Jan; 18(1):8. PubMed ID: 28049427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of different sponge types on the survival and infectivity of stored entomopathogenic nematodes.
    Touray M; Gulcu B; Ulug D; Gulsen SH; Cimen H; Kaya HK; Cakmak I; Hazir S
    J Invertebr Pathol; 2020 Mar; 171():107332. PubMed ID: 32027881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of day of emergence from the insect cadaver on the behavior and environmental tolerances of infective juveniles of the entomopathogenic nematode Heterorhabditis megidis (strain UK211).
    O'Leary SA; Stack CM; Chubb MA; Burnell AM
    J Parasitol; 1998 Aug; 84(4):665-72. PubMed ID: 9714191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of insecticides on the viability of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) under laboratory conditions.
    Laznik Z; Trdan S
    Pest Manag Sci; 2014 May; 70(5):784-9. PubMed ID: 23873740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steinernema glaseri Santa Rosa strain (Rhabditida: Steinernematidae) and Heterorhabditis bacteriophora CCA Strain (Rhabditida: Heterorhabditidae) as biological control agents of Boophilus microplus (Acari: Ixodidae).
    de Oliveira Vasconcelos V; Furlong J; de Freitas GM; Dolinski C; Aguillera MM; Rodrigues RC; Prata M
    Parasitol Res; 2004 Oct; 94(3):201-6. PubMed ID: 15480784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.