These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
648 related articles for article (PubMed ID: 25935263)
1. Enhancement of the photokilling effect of aluminum phthalocyanine in photodynamic therapy by conjugating with nitrogen-doped TiO2 nanoparticles. Pan X; Xie J; Li Z; Chen M; Wang M; Wang PN; Chen L; Mi L Colloids Surf B Biointerfaces; 2015 Jun; 130():292-8. PubMed ID: 25935263 [TBL] [Abstract][Full Text] [Related]
2. Functional titanium dioxide nanoparticle conjugated with phthalocyanine and folic acid as a promising photosensitizer for targeted photodynamic therapy in vitro and in vivo. Liang X; Xie Y; Wu J; Wang J; Petković M; Stepić M; Zhao J; Ma J; Mi L J Photochem Photobiol B; 2021 Feb; 215():112122. PubMed ID: 33433386 [TBL] [Abstract][Full Text] [Related]
3. Study of the stabilization of zinc phthalocyanine in sol-gel TiO2 for photodynamic therapy applications. Lopez T; Ortiz E; Alvarez M; Navarrete J; Odriozola JA; Martinez-Ortega F; Páez-Mozo EA; Escobar P; Espinoza KA; Rivero IA Nanomedicine; 2010 Dec; 6(6):777-85. PubMed ID: 20493967 [TBL] [Abstract][Full Text] [Related]
4. UV-emitting upconversion-based TiO2 photosensitizing nanoplatform: near-infrared light mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway. Hou Z; Zhang Y; Deng K; Chen Y; Li X; Deng X; Cheng Z; Lian H; Li C; Lin J ACS Nano; 2015 Mar; 9(3):2584-99. PubMed ID: 25692960 [TBL] [Abstract][Full Text] [Related]
5. Investigation of in vitro PDT activities of zinc phthalocyanine immobilised TiO Yurt F; Ince M; Colak SG; Ocakoglu K; Er O; Soylu HM; Gunduz C; Avci CB; Kurt CC Int J Pharm; 2017 May; 524(1-2):467-474. PubMed ID: 28365390 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of photodynamic treatment using aluminum phthalocyanine tetrasulfonate chloride as a photosensitizer: new approach. Amin RM; Hauser C; Kinzler I; Rueck A; Scalfi-Happ C Photochem Photobiol Sci; 2012 Jul; 11(7):1156-63. PubMed ID: 22402592 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of the photokilling effect of TiO Shang H; Han D; Ma M; Li S; Xue W; Zhang A J Photochem Photobiol B; 2017 Dec; 177():112-123. PubMed ID: 29089229 [TBL] [Abstract][Full Text] [Related]
8. Carbon-Doped TiO Yang CC; Tsai MH; Li KY; Hou CH; Lin FH Int J Mol Sci; 2019 Apr; 20(9):. PubMed ID: 31035468 [TBL] [Abstract][Full Text] [Related]
9. Study of the Photodynamic Activity of N-Doped TiO₂ Nanoparticles Conjugated with Aluminum Phthalocyanine. Pan X; Liang X; Yao L; Wang X; Jing Y; Ma J; Fei Y; Chen L; Mi L Nanomaterials (Basel); 2017 Oct; 7(10):. PubMed ID: 29053580 [TBL] [Abstract][Full Text] [Related]
10. PEGylated doped- and undoped-TiO Shah Z; Nazir S; Mazhar K; Abbasi R; Samokhvalov IM Photodiagnosis Photodyn Ther; 2019 Sep; 27():173-183. PubMed ID: 31136827 [TBL] [Abstract][Full Text] [Related]
12. Selective Photokilling of Human Pancreatic Cancer Cells Using Cetuximab-Targeted Mesoporous Silica Nanoparticles for Delivery of Zinc Phthalocyanine. Er Ö; Colak SG; Ocakoglu K; Ince M; Bresolí-Obach R; Mora M; Sagristá ML; Yurt F; Nonell S Molecules; 2018 Oct; 23(11):. PubMed ID: 30355983 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of phthalocyanine conjugates with gold nanoparticles and liposomes for photodynamic therapy. Nombona N; Maduray K; Antunes E; Karsten A; Nyokong T J Photochem Photobiol B; 2012 Feb; 107():35-44. PubMed ID: 22209036 [TBL] [Abstract][Full Text] [Related]
16. Oxygen dependence of two-photon activation of zinc and copper phthalocyanine tetrasulfonate in Jurkat cells. Mir Y; van Lier JE; Paquette B; Houde D Photochem Photobiol; 2008; 84(5):1182-6. PubMed ID: 18331397 [TBL] [Abstract][Full Text] [Related]
17. Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a 'Trojan horse'. Wieder ME; Hone DC; Cook MJ; Handsley MM; Gavrilovic J; Russell DA Photochem Photobiol Sci; 2006 Aug; 5(8):727-34. PubMed ID: 16886087 [TBL] [Abstract][Full Text] [Related]
18. Hollow silica nanoparticles loaded with hydrophobic phthalocyanine for near-infrared photodynamic and photothermal combination therapy. Peng J; Zhao L; Zhu X; Sun Y; Feng W; Gao Y; Wang L; Li F Biomaterials; 2013 Oct; 34(32):7905-12. PubMed ID: 23891514 [TBL] [Abstract][Full Text] [Related]
19. Fully protected glycosylated zinc (II) phthalocyanine shows high uptake and photodynamic cytotoxicity in MCF-7 cancer cells. Kimani SG; Shmigol TA; Hammond S; Phillips JB; Bruce JI; MacRobert AJ; Malakhov MV; Golding JP Photochem Photobiol; 2013; 89(1):139-49. PubMed ID: 22803957 [TBL] [Abstract][Full Text] [Related]
20. Multifunctional core-shell upconverting nanoparticles for imaging and photodynamic therapy of liver cancer cells. Zhao Z; Han Y; Lin C; Hu D; Wang F; Chen X; Chen Z; Zheng N Chem Asian J; 2012 Apr; 7(4):830-7. PubMed ID: 22279027 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]