These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 25936023)

  • 1. Actuation of digital micro drops by electrowetting on open microfluidic chips fabricated in photolithography.
    Ko H; Lee JS; Jung CH; Choi JH; Kwon OS; Shin K
    J Nanosci Nanotechnol; 2014 Aug; 14(8):5894-7. PubMed ID: 25936023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Affordable Fabrication of Conductive Electrodes and Dielectric Films for a Paper-based Digital Microfluidic Chip.
    Soum V; Kim Y; Park S; Chuong M; Ryu SR; Lee SH; Tanev G; Madsen J; Kwon OS; Shin K
    Micromachines (Basel); 2019 Feb; 10(2):. PubMed ID: 30736440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated Full-Range Droplet Actuation for Inkjet-Printed Digital Microfluidic Chip on Flexible Substrates.
    Wang H; Chen L
    IEEE Trans Nanobioscience; 2022 Jan; 21(1):10-20. PubMed ID: 34529569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active digital microfluidic paper chips with inkjet-printed patterned electrodes.
    Ko H; Lee J; Kim Y; Lee B; Jung CH; Choi JH; Kwon OS; Shin K
    Adv Mater; 2014 Apr; 26(15):2335-40. PubMed ID: 24729060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip.
    Karuwan C; Sukthang K; Wisitsoraat A; Phokharatkul D; Patthanasettakul V; Wechsatol W; Tuantranont A
    Talanta; 2011 Jun; 84(5):1384-9. PubMed ID: 21641456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Droplet Velocity Measurement Based on Dielectric Layer Thickness Variation Using Digital Microfluidic Devices.
    Zulkepli SNIS; Hamid NH; Shukla V
    Biosensors (Basel); 2018 May; 8(2):. PubMed ID: 29738428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Droplet-on-a-wristband: chip-to-chip digital microfluidic interfaces between replaceable and flexible electrowetting modules.
    Fan SK; Yang H; Hsu W
    Lab Chip; 2011 Jan; 11(2):343-7. PubMed ID: 20957291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofunctionalization of electrowetting-on-dielectric digital microfluidic chips for miniaturized cell-based applications.
    Witters D; Vergauwe N; Vermeir S; Ceyssens F; Liekens S; Puers R; Lammertyn J
    Lab Chip; 2011 Aug; 11(16):2790-4. PubMed ID: 21720645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size-selective sliding of sessile drops on a slightly inclined plane using low-frequency AC electrowetting.
    Hong J; Lee SJ; Koo BC; Suh YK; Kang KH
    Langmuir; 2012 Apr; 28(15):6307-12. PubMed ID: 22439770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput sorting of drops in microfluidic chips using electric capacitance.
    Pit AM; de Ruiter R; Kumar A; Wijnperlé D; Duits MH; Mugele F
    Biomicrofluidics; 2015 Jul; 9(4):044116. PubMed ID: 26339316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrowetting-on-Dielectric Based Economical Digital Microfluidic Chip on Flexible Substrate by Inkjet Printing.
    Wang H; Chen L
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33339126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-speed droplet actuation on single-plate electrode arrays.
    Banerjee AN; Qian S; Joo SW
    J Colloid Interface Sci; 2011 Oct; 362(2):567-74. PubMed ID: 21803364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hybrid microfluidic chip with electrowetting functionality using ultraviolet (UV)-curable polymer.
    Gu H; Duits MH; Mugele F
    Lab Chip; 2010 Jun; 10(12):1550-6. PubMed ID: 20517557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrowetting-on-dielectrics for manipulation of oil drops and gas bubbles in aqueous-shell compound drops.
    Li J; Wang Y; Chen H; Wan J
    Lab Chip; 2014 Nov; 14(22):4334-7. PubMed ID: 25236507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A droplet energy harvesting and actuation system for self-powered digital microfluidics.
    Chen G; Liu X; Li S; Dong M; Jiang D
    Lab Chip; 2018 Mar; 18(7):1026-1034. PubMed ID: 29536066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-chip drop-to-drop liquid microextraction coupled with real-time concentration monitoring technique.
    Wijethunga PA; Nanayakkara YS; Kunchala P; Armstrong DW; Moon H
    Anal Chem; 2011 Mar; 83(5):1658-64. PubMed ID: 21294515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic potential wells for on-demand drop manipulation in microchannels.
    de Ruiter R; Pit AM; de Oliveira VM; Duits MH; van den Ende D; Mugele F
    Lab Chip; 2014 Mar; 14(5):883-91. PubMed ID: 24394887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromechanical model for actuating liquids in a two-plate droplet microfluidic device.
    Chatterjee D; Shepherd H; Garrell RL
    Lab Chip; 2009 May; 9(9):1219-29. PubMed ID: 19370240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Digital microfluidic operations on micro-electrode dot array architecture.
    Wang G; Teng D; Fan SK
    IET Nanobiotechnol; 2011 Dec; 5(4):152-60. PubMed ID: 22149873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EWOD (electrowetting on dielectric) digital microfluidics powered by finger actuation.
    Peng C; Zhang Z; Kim CJ; Ju YS
    Lab Chip; 2014 Mar; 14(6):1117-22. PubMed ID: 24452784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.