BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25936058)

  • 1. Modeling and simulation of patterning diblock copolymers through nanoimprint lithography.
    Kim SK
    J Nanosci Nanotechnol; 2014 Aug; 14(8):6065-8. PubMed ID: 25936058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of nanoimprint lithography with block copolymer directed self-assembly for fabrication of a sub-20 nm template for bit-patterned media.
    Yang X; Xiao S; Hu W; Hwu J; van de Veerdonk R; Wago K; Lee K; Kuo D
    Nanotechnology; 2014 Oct; 25(39):395301. PubMed ID: 25189432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Electric Field Effects on Defect-Free Self-Assembled Nano-Patterning of Block Copolymer.
    Kim SK
    J Nanosci Nanotechnol; 2016 Mar; 16(3):2706-9. PubMed ID: 27455694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. UV Nanoimprint Lithography: Geometrical Impact on Filling Properties of Nanoscale Patterns.
    Thanner C; Eibelhuber M
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33806976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Order quantification of hexagonal periodic arrays fabricated by in situ solvent-assisted nanoimprint lithography of block copolymers.
    Simão C; Khunsin W; Kehagias N; Salaun M; Zelsmann M; Morris MA; Sotomayor Torres CM
    Nanotechnology; 2014 May; 25(17):175703. PubMed ID: 24722230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sub-10 nm nanofabrication via nanoimprint directed self-assembly of block copolymers.
    Park SM; Liang X; Harteneck BD; Pick TE; Hiroshiba N; Wu Y; Helms BA; Olynick DL
    ACS Nano; 2011 Nov; 5(11):8523-31. PubMed ID: 21995511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contact Hole Shrinking of Directed Self-Assembly and Its Application Based on Simulation Approach.
    Kim SK
    J Nanosci Nanotechnol; 2015 Oct; 15(10):8183-6. PubMed ID: 26726484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directed Self-Assembly of Triblock Copolymer on Chemical Patterns for Sub-10-nm Nanofabrication via Solvent Annealing.
    Xiong S; Wan L; Ishida Y; Chapuis YA; Craig GS; Ruiz R; Nealey PF
    ACS Nano; 2016 Aug; 10(8):7855-65. PubMed ID: 27482932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochastic simulation studies of line-edge roughness in block copolymer lithography.
    Kim SK
    J Nanosci Nanotechnol; 2014 Aug; 14(8):6143-5. PubMed ID: 25936074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed self-assembly lithography and its application based on simulation approach.
    Kim SK
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3412-6. PubMed ID: 22849135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed Self-Assembly and Pattern Transfer of Five Nanometer Block Copolymer Lamellae.
    Lane AP; Yang X; Maher MJ; Blachut G; Asano Y; Someya Y; Mallavarapu A; Sirard SM; Ellison CJ; Willson CG
    ACS Nano; 2017 Aug; 11(8):7656-7665. PubMed ID: 28700207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UV-nanoimprint lithography: structure, materials and fabrication of flexible molds.
    Lan H; Liu H
    J Nanosci Nanotechnol; 2013 May; 13(5):3145-72. PubMed ID: 23858828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inherently reproducible fabrication of plasmonic nanoparticle arrays for SERS by combining nanoimprint and copolymer lithography.
    Krishnamoorthy S; Krishnan S; Thoniyot P; Low HY
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1033-40. PubMed ID: 21375254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanopatterns with a Square Symmetry from an Orthogonal Lamellar Assembly of Block Copolymers.
    Cha SK; Yong D; Yang GG; Jin HM; Kim JH; Han KH; Kim JU; Jeong SJ; Kim SO
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20265-20271. PubMed ID: 31081329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photopatterning of cross-linkable epoxide-functionalized block copolymers and dual-tone nanostructure development for fabrication across the nano- and microscales.
    He C; Stoykovich MP
    Small; 2015 May; 11(20):2407-16. PubMed ID: 25611328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creating Active Device Materials for Nanoelectronics Using Block Copolymer Lithography.
    Cummins C; Bell AP; Morris MA
    Nanomaterials (Basel); 2017 Sep; 7(10):. PubMed ID: 28973987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Negative-tone block copolymer lithography by in situ surface chemical modification.
    Kim BH; Byeon KJ; Kim JY; Kim J; Jin HM; Cho JY; Jeong SJ; Shin J; Lee H; Kim SO
    Small; 2014 Oct; 10(20):4207-12. PubMed ID: 24912807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Assembled Nanofeatures in Complex Three-Dimensional Topographies via Nanoimprint and Block Copolymer Lithography Methods.
    Cummins C; Borah D; Rasappa S; Senthamaraikannan R; Simao C; Francone A; Kehagias N; Sotomayor-Torres CM; Morris MA
    ACS Omega; 2017 Aug; 2(8):4417-4423. PubMed ID: 31457733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal scanning probe lithography for the directed self-assembly of block copolymers.
    Gottlieb S; Lorenzoni M; Evangelio L; Fernández-Regúlez M; Ryu YK; Rawlings C; Spieser M; Knoll AW; Perez-Murano F
    Nanotechnology; 2017 Apr; 28(17):175301. PubMed ID: 28374684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pattern transfer using block copolymers.
    Gu X; Gunkel I; Russell TP
    Philos Trans A Math Phys Eng Sci; 2013 Oct; 371(2000):20120306. PubMed ID: 24000358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.