These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 25936111)

  • 1. Thickness effect of single crystalline TiO2 nanorods for dye-sensitized solar cells.
    Kang SH
    J Nanosci Nanotechnol; 2014 Aug; 14(8):6318-21. PubMed ID: 25936111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of photovoltaic properties of TiO2 electrodes prepared with nanoparticles and nanorods.
    Nam SH; Ju DW; Boo JH
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9406-10. PubMed ID: 25971074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells.
    Liu B; Aydil ES
    J Am Chem Soc; 2009 Mar; 131(11):3985-90. PubMed ID: 19245201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled Structure and Growth Mechanism behind Hydrothermal Growth of TiO
    Prathan A; Sanglao J; Wang T; Bhoomanee C; Ruankham P; Gardchareon A; Wongratanaphisan D
    Sci Rep; 2020 May; 10(1):8065. PubMed ID: 32415120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrothermal fabrication of quasi-one-dimensional single-crystalline anatase TiO2 nanostructures on FTO glass and their applications in dye-sensitized solar cells.
    Liao JY; Lei BX; Wang YF; Liu JM; Su CY; Kuang DB
    Chemistry; 2011 Jan; 17(4):1352-7. PubMed ID: 21243703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrothermal synthesis of one-dimensional single-crystalline rutile TiO2 nanostructures and their application in dye-sensitized solar cells.
    Jia Q
    J Nanosci Nanotechnol; 2011 Nov; 11(11):9846-50. PubMed ID: 22413307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of calcination treatment on the morphology, crystallinity, and photoelectric properties of all-solid-state dye-sensitized solar cells assembled by TiO2 nanorod arrays.
    Sun X; Sun Q; Li Y; Sui L; Dong L
    Phys Chem Chem Phys; 2013 Nov; 15(42):18716-20. PubMed ID: 24071636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple step growth of single crystalline rutile nanorods with the assistance of self-assembled monolayer for dye sensitized solar cells.
    Yang M; Neupane S; Wang X; He J; Li W; Pala N
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9809-15. PubMed ID: 24033252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Densely aligned rutile TiO2 nanorod arrays with high surface area for efficient dye-sensitized solar cells.
    Lv M; Zheng D; Ye M; Sun L; Xiao J; Guo W; Lin C
    Nanoscale; 2012 Sep; 4(19):5872-9. PubMed ID: 22899164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultralong Rutile TiO2 Nanowire Arrays for Highly Efficient Dye-Sensitized Solar Cells.
    Li H; Yu Q; Huang Y; Yu C; Li R; Wang J; Guo F; Jiao S; Gao S; Zhang Y; Zhang X; Wang P; Zhao L
    ACS Appl Mater Interfaces; 2016 Jun; 8(21):13384-91. PubMed ID: 27097727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical rutile TiO2 flower cluster-based high efficiency dye-sensitized solar cells via direct hydrothermal growth on conducting substrates.
    Ye M; Liu HY; Lin C; Lin Z
    Small; 2013 Jan; 9(2):312-21. PubMed ID: 23047462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vertically aligned ZnO nanorods on hot filament chemical vapor deposition grown graphene oxide thin film substrate: solar energy conversion.
    Ameen S; Akhtar MS; Song M; Shin HS
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4405-12. PubMed ID: 22827848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasma treatment effect on dye-sensitized solar cell efficiency of hydrothermal-processed TiO2 nanorods.
    Ahn K; Lee HU; Jeong SY; Kim JP; Jin JS; Ahn HS; Kim HS; Cho CR
    J Nanosci Nanotechnol; 2012 Jul; 12(7):6022-5. PubMed ID: 22966701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophoretically deposited TiO2 compact layers using aqueous suspension for dye-sensitized solar cells.
    Li X; Qiu Y; Wang S; Lu S; Gruar RI; Zhang X; Darr JA; He T
    Phys Chem Chem Phys; 2013 Sep; 15(35):14729-35. PubMed ID: 23903769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable photovoltaic performance of preferentially oriented rutile TiO
    Girisun TCS; Jeganathan C; Pavithra N; Anandan S
    Nanotechnology; 2018 Feb; 29(8):085605. PubMed ID: 29360633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrothermal synthesis of a crystalline rutile TiO2 nanorod based network for efficient dye-sensitized solar cells.
    Yu H; Pan J; Bai Y; Zong X; Li X; Wang L
    Chemistry; 2013 Sep; 19(40):13569-74. PubMed ID: 23939704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photovoltaic performance of dye-sensitized solar cell low temperature growth of ZnO nanorods using chemical bath deposition.
    Lee JG; Choi YC; Lee DK; Ahn KS; Kim JH
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3469-72. PubMed ID: 22849148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of highly ordered single-crystalline TiO2 nanowire length on the photovoltaic performance of dye-sensitized solar cells.
    Zhou ZJ; Fan JQ; Wang X; Zhou WH; Du ZL; Wu SX
    ACS Appl Mater Interfaces; 2011 Nov; 3(11):4349-53. PubMed ID: 21966998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micrometer-sized fluorine doped tin oxide as fast electron collector for enhanced dye-sensitized solar cells.
    Cui XR; Wang YF; Li Z; Zhou L; Gao F; Zeng JH
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16593-600. PubMed ID: 25226086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-efficiency dye-sensitized solar cells based on robust and both-end-open TiO2 nanotube membranes.
    Lin J; Chen J; Chen X
    Nanoscale Res Lett; 2011 Jul; 6(1):475. PubMed ID: 21794157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.