These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 25936123)

  • 41. Cu-Mn-Ce ternary mixed-oxide catalysts for catalytic combustion of toluene.
    Lu H; Kong X; Huang H; Zhou Y; Chen Y
    J Environ Sci (China); 2015 Jun; 32():102-7. PubMed ID: 26040736
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preparation of a Series of Pd@UIO-66 by a Double-Solvent Method and Its Catalytic Performance for Toluene Oxidation.
    Wei C; Hou H; Wang E; Lu M
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31877997
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Low-temperature selective catalytic reduction of NO with propylene in excess oxygen over the Pt/ZSM-5 catalyst.
    Zhang Z; Chen M; Jiang Z; Shangguan W
    J Hazard Mater; 2011 Oct; 193():330-4. PubMed ID: 21824727
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nanocrystalline ZrO
    Singhania A; Gupta SM
    Beilstein J Nanotechnol; 2017; 8():264-271. PubMed ID: 28243565
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion.
    Pozan GS
    J Hazard Mater; 2012 Jun; 221-222():124-30. PubMed ID: 22579460
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Fabrication of Co3O4 nanorods and its catalytic oxidation of gaseous toluene].
    Yan QY; Li XY; Zhao QD; Qu ZP
    Huan Jing Ke Xue; 2011 Dec; 32(12):3689-93. PubMed ID: 22468541
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Al2O3-supported transition-metal oxide catalysts for catalytic incineration of toluene.
    Wang CH
    Chemosphere; 2004 Apr; 55(1):11-7. PubMed ID: 14720541
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CuO and CeO
    Tinh NT; Van NTT; Anh NP; Ha HKP; Tri N
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(4):352-358. PubMed ID: 30633631
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Toluene oxidation on titanium- and iron-modified MCM-41 materials.
    Popova M; Szegedi A; Cherkezova-Zheleva Z; Mitov I; Kostova N; Tsoncheva T
    J Hazard Mater; 2009 Aug; 168(1):226-32. PubMed ID: 19269739
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Highly selective catalytic reduction of NO
    Wang C; Yu F; Zhu M; Tang C; Zhang K; Zhao D; Dong L; Dai B
    J Environ Sci (China); 2019 Jan; 75():124-135. PubMed ID: 30473277
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Catalytic activity of Fe/ZrO₂ nanoparticles for dimethyl sulfide oxidation.
    Soni KC; Chandra Shekar S; Singh B; Gopi T
    J Colloid Interface Sci; 2015 May; 446():226-36. PubMed ID: 25678157
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Selective catalytic oxidation of H₂S over iron oxide supported on alumina-intercalated Laponite clay catalysts.
    Zhang X; Dou G; Wang Z; Li L; Wang Y; Wang H; Hao Z
    J Hazard Mater; 2013 Sep; 260():104-11. PubMed ID: 23747468
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative study of CeO2 and doped CeO2 with tailored oxygen vacancies for CO oxidation.
    Wang Z; Wang Q; Liao Y; Shen G; Gong X; Han N; Liu H; Chen Y
    Chemphyschem; 2011 Oct; 12(15):2763-70. PubMed ID: 21882333
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparation and characterization of nanosized gold catalysts supported on Co3O4 and their activities for CO oxidation.
    Kim KJ; Song JK; Shin SS; Kang SJ; Chung MC; Jung SC; Jeong WJ; Ahn HG
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1605-8. PubMed ID: 21456247
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Degradation of phenol via wet-air oxidation over CuO/CeO2-ZrO2 nanocatalyst synthesized employing ultrasound energy: physicochemical characterization and catalytic performance.
    Parvas M; Haghighi M; Allahyari S
    Environ Technol; 2014; 35(9-12):1140-9. PubMed ID: 24701909
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells.
    Zhang L; Liu C; Zhuang L; Li W; Zhou S; Zhang J
    Biosens Bioelectron; 2009 May; 24(9):2825-9. PubMed ID: 19297145
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Performance of the supported copper oxide catalysts for the catalytic incineration of aromatic hydrocarbons.
    Wang CH; Lin SS; Chen CL; Weng HS
    Chemosphere; 2006 Jun; 64(3):503-9. PubMed ID: 16403565
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Eco-Friendly Cavity-Containing Iron Oxides Prepared by Mild Routes as Very Efficient Catalysts for the Total Oxidation of VOCs.
    Sanchis R; Alonso-Domínguez D; Dejoz A; Pico MP; Álvarez-Serrano I; García T; López ML; Solsona B
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30096865
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A comparison study of toluene removal by two-stage DBD-catalyst systems loading with MnO(x), CeMnO(x), and CoMnO(x).
    Huang Y; Dai S; Feng F; Zhang X; Liu Z; Yan K
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):19240-50. PubMed ID: 26253186
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Highly catalytic activity of Mn/SBA-15 catalysts for toluene combustion improved by adjusting the morphology of supports.
    Qin Y; Qu Z; Dong C; Wang Y; Huang N
    J Environ Sci (China); 2019 Feb; 76():208-216. PubMed ID: 30528011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.