These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 2593616)

  • 21. An optimized index of human cardiovascular adaptation to simulated weightlessness.
    Wang M; Hassebrook L; Evans J; Varghese T; Knapp C
    IEEE Trans Biomed Eng; 1996 May; 43(5):502-11. PubMed ID: 8849463
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Changes in several indicators of blood rheology in experiments simulating weightlessness].
    Ivanov AP; Goncharov IB; Davydkin AF; Lavrov VI
    Kosm Biol Aviakosm Med; 1983; 17(6):25-30. PubMed ID: 6656182
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [The antigravity suit, chamberless type, as a means of increasing orthostatic tolerance after water immersion hypokinesis and acceleration].
    Shul'zhenko EB; Kozlova VG; Kurdin KA; Iarov AS; Plokhova VG
    Kosm Biol Aviakosm Med; 1983; 17(6):30-3. PubMed ID: 6656183
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hormonal responses to head-out water immersion diminish after exposure to head-down tilt.
    Matsui N; Kambe F; Miyamoto N; Murata Y; Seo H; Ohmori S; Sueda K; Tamura Y
    Microgravity Sci Technol; 1993 Dec; 6(4):286-92. PubMed ID: 11541851
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of mechanical stimulation of the support zones of soles on the muscle stiffness in 7-day dry immersion.
    Miller TF; Saenko IV; Popov DV; Vinogradova OL; Kozlovskaya IB
    J Gravit Physiol; 2004 Jul; 11(2):P135-6. PubMed ID: 16237815
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Lower body negative pressure as a method of preventing changes related to blood hydrostatic pressure changes].
    Pestov ID; Asiamolov BF
    Kosm Biol Med; 1972; 6(4):59-64. PubMed ID: 4646598
    [No Abstract]   [Full Text] [Related]  

  • 27. [Skeletal musculature of rats during modeling of the physiological effects of weightlessness (morphological study)].
    Il'ina-Kakueva EI; Novikov VE
    Kosm Biol Aviakosm Med; 1985; 19(3):56-60. PubMed ID: 4033047
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Some physiological effects caused by 30 days of bed rest in different body positions].
    Katkovskiĭ BS; Georgievskiĭ VS; Machinskiĭ GV; Mikhaĭlov VM; Pometov IuD
    Kosm Biol Aviakosm Med; 1980; 14(4):55-8. PubMed ID: 7421103
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Structural-metabolic plasticity of mammalian skeletal muscles in hypokinesis and weightlessness].
    Shenkman BS
    Aviakosm Ekolog Med; 2002; 36(3):3-14. PubMed ID: 12222068
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human muscle atrophy in supportlessness: effects of short-term exposure to dry immersion.
    Shenkman BS; Kozlovskaya IB; Nemirovskaya TL; Tcheglova IA
    J Gravit Physiol; 1997 Jul; 4(2):P137-8. PubMed ID: 11540680
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sympathetic nervous adjustments in man to simulated weightlessness induced by water immersion.
    Mano T; Iwase S; Yamazaki Y; Saito M
    J UOEH; 1985 Mar; 7 Suppl():215-27. PubMed ID: 2990001
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimations of changes in plasma volume during simulated weightlessness.
    Johansen LB; Norsk P
    J Gravit Physiol; 1995; 2(1):P64-5. PubMed ID: 11538936
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of dry immersion in combination with stimulation of foot support zones upon muscle force-velocity characteristics.
    Netreba AI; Khusnutdinova DR; Vinogradova OL; Kozlovskaya IB
    J Gravit Physiol; 2004 Jul; 11(2):P129-30. PubMed ID: 16237812
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Changes of brain potentials related to selective mental arithmetic during simulated weightlessness].
    Zhao L; Wei J; Yan G; Chen W; Duan R; Ren W
    Space Med Med Eng (Beijing); 1998 Jun; 11(3):167-71. PubMed ID: 11541415
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sympathetic nerve responses in humans to short and long term simulation of microgravity.
    Mano T; Iwase S; Kamiya A
    J Gravit Physiol; 1998 Jul; 5(1):P93-6. PubMed ID: 11542379
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Human sensorimotor coordination following space flights.
    Cherepakhin MA; Purakhin YN; Petukhov BN; Pervushin VI
    Life Sci Space Res; 1973; 11():117-21. PubMed ID: 11998857
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Potential for modelling the hemodynamic effects of weightlessness by exposure to increased pressure].
    Nekhaev AS; Degtiarev VA; Bednenko VS; Kirillova ZA
    Kosm Biol Aviakosm Med; 1982; 16(5):54-7. PubMed ID: 7144098
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Forced expiration indices of the healthy human being in simulated weightlessness].
    Asiamolova NM; Shabel'nikov VG; Baranov VM; Kotov AN; Volkov MIu
    Kosm Biol Aviakosm Med; 1985; 19(6):34-7. PubMed ID: 4087858
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Velocity of head movements and sensory-motor adaptation during and after short spaceflight.
    Hlavacka F; Kornilova LN
    J Gravit Physiol; 2004 Jul; 11(2):P13-6. PubMed ID: 16231430
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Activity of the sympathetico-adrenal system in humans during modeling of weightlessness].
    Vasil'ev VN; Lakota NG; Chekanova SL; Gudoshnikova LV
    Kosm Biol Aviakosm Med; 1989; 23(2):34-40. PubMed ID: 2716267
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.