BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25936337)

  • 1. Engineering L-arabinose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production.
    Kurosawa K; Plassmeier J; Kalinowski J; Rückert C; Sinskey AJ
    Metab Eng; 2015 Jul; 30():89-95. PubMed ID: 25936337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production.
    Kurosawa K; Wewetzer SJ; Sinskey AJ
    Biotechnol Biofuels; 2013 Sep; 6(1):134. PubMed ID: 24041310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering of an L-arabinose metabolic pathway in Rhodococcus jostii RHA1 for biofuel production.
    Xiong X; Wang X; Chen S
    J Ind Microbiol Biotechnol; 2016 Jul; 43(7):1017-25. PubMed ID: 27143134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cultivation of lipid-producing bacteria with lignocellulosic biomass: effects of inhibitory compounds of lignocellulosic hydrolysates.
    Wang B; Rezenom YH; Cho KC; Tran JL; Lee DG; Russell DH; Gill JJ; Young R; Chu KH
    Bioresour Technol; 2014 Jun; 161():162-70. PubMed ID: 24698742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors.
    Kurosawa K; Laser J; Sinskey AJ
    Biotechnol Biofuels; 2015; 8():76. PubMed ID: 26052344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development.
    Holder JW; Ulrich JC; DeBono AC; Godfrey PA; Desjardins CA; Zucker J; Zeng Q; Leach AL; Ghiviriga I; Dancel C; Abeel T; Gevers D; Kodira CD; Desany B; Affourtit JP; Birren BW; Sinskey AJ
    PLoS Genet; 2011 Sep; 7(9):e1002219. PubMed ID: 21931557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved glycerol utilization by a triacylglycerol-producing Rhodococcus opacus strain for renewable fuels.
    Kurosawa K; Radek A; Plassmeier JK; Sinskey AJ
    Biotechnol Biofuels; 2015; 8():31. PubMed ID: 25763105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological and genetic differences amongst Rhodococcus species for using glycerol as a source for growth and triacylglycerol production.
    Herrero OM; Moncalián G; Alvarez HM
    Microbiology (Reading); 2016 Feb; 162(2):384-397. PubMed ID: 26732874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of a xylose metabolic pathway in Rhodococcus strains.
    Xiong X; Wang X; Chen S
    Appl Environ Microbiol; 2012 Aug; 78(16):5483-91. PubMed ID: 22636009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production.
    Kurosawa K; Boccazzi P; de Almeida NM; Sinskey AJ
    J Biotechnol; 2010 Jun; 147(3-4):212-8. PubMed ID: 20412824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The atf2 gene is involved in triacylglycerol biosynthesis and accumulation in the oleaginous Rhodococcus opacus PD630.
    Hernández MA; Arabolaza A; Rodríguez E; Gramajo H; Alvarez HM
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):2119-30. PubMed ID: 22926642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased triacylglycerol production in Rhodococcus opacus by overexpressing transcriptional regulators.
    Anthony WE; Geng W; Diao J; Carr RR; Wang B; Ning J; Moon TS; Dantas G; Zhang F
    Biotechnol Biofuels Bioprod; 2024 Jun; 17(1):83. PubMed ID: 38898475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of Chemical and Metabolite Sensors for Rhodococcus opacus PD630.
    DeLorenzo DM; Henson WR; Moon TS
    ACS Synth Biol; 2017 Oct; 6(10):1973-1978. PubMed ID: 28745867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A key
    Xue L; Zhao Y; Li L; Rao X; Chen X; Ma F; Yu H; Xie S
    Appl Environ Microbiol; 2023 Oct; 89(10):e0052223. PubMed ID: 37800939
    [No Abstract]   [Full Text] [Related]  

  • 15. Cloning and characterization of a gene involved in triacylglycerol biosynthesis and identification of additional homologous genes in the oleaginous bacterium Rhodococcus opacus PD630.
    Alvarez AF; Alvarez HM; Kalscheuer R; Wältermann M; Steinbüchel A
    Microbiology (Reading); 2008 Aug; 154(Pt 8):2327-2335. PubMed ID: 18667565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630.
    Yoneda A; Henson WR; Goldner NK; Park KJ; Forsberg KJ; Kim SJ; Pesesky MW; Foston M; Dantas G; Moon TS
    Nucleic Acids Res; 2016 Mar; 44(5):2240-54. PubMed ID: 26837573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Rhodococcus opacus PD630 heparin-binding hemagglutinin homolog TadA mediates lipid body formation.
    MacEachran DP; Prophete ME; Sinskey AJ
    Appl Environ Microbiol; 2010 Nov; 76(21):7217-25. PubMed ID: 20851968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhodococcus opacus B4: a promising bacterium for production of biofuels and biobased chemicals.
    Castro AR; Rocha I; Alves MM; Pereira MA
    AMB Express; 2016 Dec; 6(1):35. PubMed ID: 27179529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of macroelement concentrations, pH and osmolarity for triacylglycerol accumulation in Rhodococcus opacus strain PD630.
    Janßen HJ; Ibrahim MH; Bröker D; Steinbüchel A
    AMB Express; 2013; 3():38. PubMed ID: 23855965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saccharification of cellulose by recombinant Rhodococcus opacus PD630 strains.
    Hetzler S; Bröker D; Steinbüchel A
    Appl Environ Microbiol; 2013 Sep; 79(17):5159-66. PubMed ID: 23793636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.