These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 25936408)
1. Rate law analysis of water oxidation on a hematite surface. Le Formal F; Pastor E; Tilley SD; Mesa CA; Pendlebury SR; Grätzel M; Durrant JR J Am Chem Soc; 2015 May; 137(20):6629-37. PubMed ID: 25936408 [TBL] [Abstract][Full Text] [Related]
2. Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT. Mesa CA; Francàs L; Yang KR; Garrido-Barros P; Pastor E; Ma Y; Kafizas A; Rosser TE; Mayer MT; Reisner E; Grätzel M; Batista VS; Durrant JR Nat Chem; 2020 Jan; 12(1):82-89. PubMed ID: 31636394 [TBL] [Abstract][Full Text] [Related]
3. Surface Modification of Hematite Photoanodes with CeO Ahmed MG; Zhang M; Tay YF; Chiam SY; Wong LH ChemSusChem; 2020 Oct; 13(20):5489-5496. PubMed ID: 32776429 [TBL] [Abstract][Full Text] [Related]
4. Hematite photoanode modified with inexpensive hole-storage layer for highly efficient solar water oxidation. He X; Shang C; Meng Q; Chen Z; Jin M; Shui L; Zhang Y; Zhang Z; Yuan M; Wang X; Kempa K; Zhou G Nanotechnology; 2020 Nov; 31(45):455405. PubMed ID: 32348967 [TBL] [Abstract][Full Text] [Related]
5. Low Catalyst Loading Enhances Charge Accumulation for Photoelectrochemical Water Splitting. Liu T; Li W; Wang DZ; Luo T; Fei M; Shin D; Waegele MM; Wang D Angew Chem Int Ed Engl; 2023 Aug; 62(34):e202307909. PubMed ID: 37382150 [TBL] [Abstract][Full Text] [Related]
6. Bifunctional citrate-Ni Wang P; Li F; Long X; Wang T; Chai H; Yang H; Li S; Ma J; Jin J Nanoscale; 2021 Sep; 13(33):14197-14206. PubMed ID: 34477701 [TBL] [Abstract][Full Text] [Related]
7. Photoinduced Absorption Spectroscopy of Photoelectrocatalytic Methylene Blue Oxidation on Titania and Hematite: The Thermodynamic and Kinetic Impacts on Reaction Pathways. Guo X; Ma Z; Yuan Y; Kang Y; Xu H; Mao Z; Ma Y Adv Sci (Weinh); 2023 Mar; 10(9):e2206685. PubMed ID: 36683174 [TBL] [Abstract][Full Text] [Related]
8. Rate-Limiting O-O Bond Formation Pathways for Water Oxidation on Hematite Photoanode. Zhang Y; Zhang H; Liu A; Chen C; Song W; Zhao J J Am Chem Soc; 2018 Mar; 140(9):3264-3269. PubMed ID: 29455534 [TBL] [Abstract][Full Text] [Related]
9. Engineered Hematite Mesoporous Single Crystals Drive Drastic Enhancement in Solar Water Splitting. Wang CW; Yang S; Fang WQ; Liu P; Zhao H; Yang HG Nano Lett; 2016 Jan; 16(1):427-33. PubMed ID: 26654272 [TBL] [Abstract][Full Text] [Related]
10. Ultra-Narrow Depletion Layers in a Hematite Mesocrystal-Based Photoanode for Boosting Multihole Water Oxidation. Zhang Z; Nagashima H; Tachikawa T Angew Chem Int Ed Engl; 2020 Jun; 59(23):9047-9054. PubMed ID: 32173995 [TBL] [Abstract][Full Text] [Related]
11. Pivotal Role and Regulation of Proton Transfer in Water Oxidation on Hematite Photoanodes. Zhang Y; Zhang H; Ji H; Ma W; Chen C; Zhao J J Am Chem Soc; 2016 Mar; 138(8):2705-11. PubMed ID: 26859244 [TBL] [Abstract][Full Text] [Related]
12. Observation of 4 Yang X; Zheng Z; Hu J; Qu J; Ma D; Li J; Guo C; Li CM iScience; 2021 Dec; 24(12):103500. PubMed ID: 34934920 [TBL] [Abstract][Full Text] [Related]
13. Activation of a Nickel-Based Oxygen Evolution Reaction Catalyst on a Hematite Photoanode via Incorporation of Cerium for Photoelectrochemical Water Oxidation. Lim H; Kim JY; Evans EJ; Rai A; Kim JH; Wygant BR; Mullins CB ACS Appl Mater Interfaces; 2017 Sep; 9(36):30654-30661. PubMed ID: 28813595 [TBL] [Abstract][Full Text] [Related]
14. Water Oxidation Mechanisms of Metal Oxide Catalysts by Vibrational Spectroscopy of Transient Intermediates. Zhang M; Frei H Annu Rev Phys Chem; 2017 May; 68():209-231. PubMed ID: 28226220 [TBL] [Abstract][Full Text] [Related]
15. Identifying Water Oxidation Mechanisms at Pure and Titanium-Doped Hematite-Based Photoanodes with Spectroelectrochemistry. Zhang J; Lin Q; Wang Z; Liu H; Li X; Zhang Y Small Methods; 2021 Dec; 5(12):e2100976. PubMed ID: 34928039 [TBL] [Abstract][Full Text] [Related]
16. n-Fe₂O₃ to N⁺-TiO₂Heterojunction Photoanode for Photoelectrochemical Water Oxidation. Yang JS; Lin WH; Lin CY; Wang BS; Wu JJ ACS Appl Mater Interfaces; 2015 Jun; 7(24):13314-21. PubMed ID: 26027640 [TBL] [Abstract][Full Text] [Related]
17. Multistep Surface Trap State Finishing Based on in Situ One-Step MOF Modification over Hematite for Dramatically Enhanced Solar Water Oxidation. Chen S; Li J; Wang J; Zhu H; Bai J; Zhang Y; Zhou T; Zhou M; Zhou B ACS Appl Mater Interfaces; 2020 Jul; 12(30):33638-33646. PubMed ID: 32666781 [TBL] [Abstract][Full Text] [Related]
18. N and Sn Co-Doped hematite photoanodes for efficient solar water oxidation. Jiao T; Lu C; Feng K; Deng J; Long D; Zhong J J Colloid Interface Sci; 2021 Mar; 585():660-667. PubMed ID: 33127051 [TBL] [Abstract][Full Text] [Related]
19. Water oxidation catalysis: effects of nickel incorporation on the structural and chemical properties of the α-Fe₂O₃(0001) surface. Zhao P; Koel BE ACS Appl Mater Interfaces; 2014 Dec; 6(24):22289-96. PubMed ID: 25423044 [TBL] [Abstract][Full Text] [Related]
20. Doping-Promoted Solar Water Oxidation on Hematite Photoanodes. Zhang Y; Ji H; Ma W; Chen C; Song W; Zhao J Molecules; 2016 Jul; 21(7):. PubMed ID: 27376262 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]