These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 25936622)

  • 41. Arteriolar and capillary remodelling in hypertension.
    Struijker Boudier HA
    Drugs; 1999; 59 Spec No():37-40. PubMed ID: 10548391
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Numerical Simulation of Unsteady Blood Flow through Capillary Networks.
    Davis JM; Pozrikidis C
    Bull Math Biol; 2011 Aug; 73(8):1857-80. PubMed ID: 21061079
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Theoretical basis for the method of calculating blood-flow volume velocity from hydrogen clearance curves].
    Kisliakov IuIa; Luchakov IuI; Smirnov GK
    Fiziol Zh SSSR Im I M Sechenova; 1986 Nov; 72(11):1509-14. PubMed ID: 3817189
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Measurement of pulmonary flow reserve and pulmonary index of microcirculatory resistance for detection of pulmonary microvascular obstruction.
    Ilsar R; Chawantanpipat C; Chan KH; Dobbins TA; Waugh R; Hennessy A; Celermajer DS; Ng MK
    PLoS One; 2010 Mar; 5(3):e9601. PubMed ID: 20231900
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hemodynamics and arteriovenous malformations in cavopulmonary anastomosis: the case for residual antegrade pulsatile flow.
    Henaine R; Vergnat M; Mercier O; Serraf A; De Montpreville V; Ninet J; Bacha EA
    J Thorac Cardiovasc Surg; 2013 Dec; 146(6):1359-65. PubMed ID: 23490250
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Contribution of serial and parallel microperfusion to spatial variability in pulmonary inter- and intra-acinar blood flow.
    Clark AR; Burrowes KS; Tawhai MH
    J Appl Physiol (1985); 2010 May; 108(5):1116-26. PubMed ID: 20110543
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Capillary flow impairment and functional capillary density.
    Tsai AG; Friesenecker B; Intaglietta M
    Int J Microcirc Clin Exp; 1995; 15(5):238-43. PubMed ID: 8852621
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dynamic blood flow and wall shear stress in pulmonary hypertensive disease.
    Postles A; Clark AR; Tawhai MH
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5671-4. PubMed ID: 25571282
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A computer simulation of the haemodynamic effects of intracranial arteriovenous malformation occlusion.
    Ornstein E; Blesser WB; Young WL; Pile-Spellman J
    Neurol Res; 1994 Oct; 16(5):345-52. PubMed ID: 7870273
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interaction between blood and solid particles propagating through a capillary with slip effects.
    Zeeshan A; Fatima A; Khalid F; Bhatti MM
    Microvasc Res; 2018 Sep; 119():38-46. PubMed ID: 29678730
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A numerical method of reduced complexity for simulating vascular hemodynamics using coupled 0D lumped and 1D wave propagation models.
    Kroon W; Huberts W; Bosboom M; van de Vosse F
    Comput Math Methods Med; 2012; 2012():156094. PubMed ID: 22654957
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recruitment in networks of pulmonary capillaries.
    West JB; Schneider AM; Mitchell MM
    J Appl Physiol; 1975 Dec; 39(6):976-84. PubMed ID: 1213980
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The arterial load in pulmonary hypertension.
    Saouti N; Westerhof N; Postmus PE; Vonk-Noordegraaf A
    Eur Respir Rev; 2010 Sep; 19(117):197-203. PubMed ID: 20956192
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microcirculation in the murine liver: a computational fluid dynamic model based on 3D reconstruction from in vivo microscopy.
    Piergiovanni M; Bianchi E; Capitani G; Li Piani I; Ganzer L; Guidotti LG; Iannacone M; Dubini G
    J Biomech; 2017 Oct; 63():125-134. PubMed ID: 28917579
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Two-port analysis of microcirculation: an extension of windkessel.
    Frasch HF; Kresh JY; Noordergraaf A
    Am J Physiol; 1996 Jan; 270(1 Pt 2):H376-85. PubMed ID: 8769774
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Theoretical and experimental study of intermittent blood flows in microcirculation: application to the in-vivo determination of compliance.
    Guiffant G; Gabet L; Dufaux J
    J Biomech Eng; 1998 Dec; 120(6):737-42. PubMed ID: 10412457
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microvscular networks with uniform flow.
    Chang SS; Roper M
    J Theor Biol; 2019 Feb; 462():48-64. PubMed ID: 30420333
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Analysis of the effects of measured white blood cell entrance times on hemodynamics in a computer model of a microvascular bed.
    Fenton BM; Wilson DW; Cokelet GR
    Pflugers Arch; 1985 Apr; 403(4):396-401. PubMed ID: 4011392
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A model of physical factors in the structural adaptation of microvascular networks in normotension and hypertension.
    Jacobsen JC; Gustafsson F; Holstein-Rathlou NH
    Physiol Meas; 2003 Nov; 24(4):891-912. PubMed ID: 14658781
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A computational model for microcirculation including Fahraeus-Lindqvist effect, plasma skimming and fluid exchange with the tissue interstitium.
    Possenti L; di Gregorio S; Gerosa FM; Raimondi G; Casagrande G; Costantino ML; Zunino P
    Int J Numer Method Biomed Eng; 2019 Mar; 35(3):e3165. PubMed ID: 30358172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.