BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 25936776)

  • 21. Isolation and characterization of a benzoylformate decarboxylase and a NAD+/NADP+-dependent benzaldehyde dehydrogenase involved in D-phenylglycine metabolism in Pseudomonas stutzeri ST-201.
    Saehuan C; Rojanarata T; Wiyakrutta S; McLeish MJ; Meevootisom V
    Biochim Biophys Acta; 2007 Nov; 1770(11):1585-92. PubMed ID: 17916405
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Factors mediating activity, selectivity, and substrate specificity for the thiamin diphosphate-dependent enzymes benzaldehyde lyase and benzoylformate decarboxylase.
    Knoll M; Müller M; Pleiss J; Pohl M
    Chembiochem; 2006 Dec; 7(12):1928-34. PubMed ID: 17051662
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanism-based inactivation of benzoylformate decarboxylase, a thiamin diphosphate-dependent enzyme.
    Bera AK; Polovnikova LS; Roestamadji J; Widlanski TS; Kenyon GL; McLeish MJ; Hasson MS
    J Am Chem Soc; 2007 Apr; 129(14):4120-1. PubMed ID: 17367138
    [No Abstract]   [Full Text] [Related]  

  • 24. Saturation mutagenesis of putative catalytic residues of benzoylformate decarboxylase provides a challenge to the accepted mechanism.
    Yep A; Kenyon GL; McLeish MJ
    Proc Natl Acad Sci U S A; 2008 Apr; 105(15):5733-8. PubMed ID: 18398009
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mandelate racemase and mandelate dehydrogenase coexpressed recombinant Escherichia coli in the synthesis of benzoylformate.
    Li D; Zeng Z; Yang J; Wang P; Jiang L; Feng J; Yang C
    Biosci Biotechnol Biochem; 2013; 77(6):1236-9. PubMed ID: 23748763
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thiamin-diphosphate-dependent enzymes: new aspects of asymmetric C-C bond formation.
    Pohl M; Lingen B; Müller M
    Chemistry; 2002 Dec; 8(23):5288-95. PubMed ID: 12432496
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exchanging the substrate specificities of pyruvate decarboxylase from Zymomonas mobilis and benzoylformate decarboxylase from Pseudomonas putida.
    Siegert P; McLeish MJ; Baumann M; Iding H; Kneen MM; Kenyon GL; Pohl M
    Protein Eng Des Sel; 2005 Jul; 18(7):345-57. PubMed ID: 15930043
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fragmentation of the conjugate base of 2-(1-hydroxybenzyl)thiamin: does benzoylformate decarboxylase prevent orbital overlap to avoid it?
    Hu Q; Kluger R
    J Am Chem Soc; 2004 Jan; 126(1):68-9. PubMed ID: 14709063
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Steady-state kinetics and molecular evolution of Escherichia coli MenD [(1R,6R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase], an anomalous thiamin diphosphate-dependent decarboxylase-carboligase.
    Bhasin M; Billinsky JL; Palmer DR
    Biochemistry; 2003 Nov; 42(46):13496-504. PubMed ID: 14621995
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of benzaldehyde lyase studied via thiamin diphosphate-bound intermediates and kinetic isotope effects.
    Chakraborty S; Nemeria N; Yep A; McLeish MJ; Kenyon GL; Jordan F
    Biochemistry; 2008 Mar; 47(12):3800-9. PubMed ID: 18314961
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Perturbation of the monomer-monomer interfaces of the benzoylformate decarboxylase tetramer.
    Andrews FH; Rogers MP; Paul LN; McLeish MJ
    Biochemistry; 2014 Jul; 53(27):4358-67. PubMed ID: 24956165
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of allosteric regulators on individual steps in the reaction catalyzed by Mycobacterium tuberculosis 2-hydroxy-3-oxoadipate synthase.
    Balakrishnan A; Jordan F; Nathan CF
    J Biol Chem; 2013 Jul; 288(30):21688-702. PubMed ID: 23760263
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Active-site engineering of benzaldehyde lyase shows that a point mutation can confer both new reactivity and susceptibility to mechanism-based inhibition.
    Brandt GS; Kneen MM; Petsko GA; Ringe D; McLeish MJ
    J Am Chem Soc; 2010 Jan; 132(2):438-9. PubMed ID: 20030408
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theoretical Studies of the Electronic Absorption Spectra of Thiamin Diphosphate in Pyruvate Decarboxylase.
    Paulikat M; Wechsler C; Tittmann K; Mata RA
    Biochemistry; 2017 Apr; 56(13):1854-1864. PubMed ID: 28296385
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Competing Protonation and Halide Elimination as a Probe of the Character of Thiamin-Derived Reactive Intermediates.
    Bielecki M; Howe GW; Kluger R
    Biochemistry; 2019 Aug; 58(34):3566-3571. PubMed ID: 31385510
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Double duty for a conserved glutamate in pyruvate decarboxylase: evidence of the participation in stereoelectronically controlled decarboxylation and in protonation of the nascent carbanion/enamine intermediate .
    Meyer D; Neumann P; Parthier C; Friedemann R; Nemeria N; Jordan F; Tittmann K
    Biochemistry; 2010 Sep; 49(37):8197-212. PubMed ID: 20715795
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural basis for activation of the thiamin diphosphate-dependent enzyme oxalyl-CoA decarboxylase by adenosine diphosphate.
    Berthold CL; Moussatche P; Richards NG; Lindqvist Y
    J Biol Chem; 2005 Dec; 280(50):41645-54. PubMed ID: 16216870
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elucidation of the chemistry of enzyme-bound thiamin diphosphate prior to substrate binding: defining internal equilibria among tautomeric and ionization states.
    Nemeria N; Korotchkina L; McLeish MJ; Kenyon GL; Patel MS; Jordan F
    Biochemistry; 2007 Sep; 46(37):10739-44. PubMed ID: 17715948
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional models of α-keto acid dependent nonheme iron oxygenases: synthesis and reactivity of biomimetic iron(II) benzoylformate complexes supported by a 2,9-dimethyl-1,10-phenanthroline ligand.
    Das O; Chatterjee S; Paine TK
    J Biol Inorg Chem; 2013 Mar; 18(3):401-10. PubMed ID: 23417539
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The modular structure of ThDP-dependent enzymes.
    Vogel C; Pleiss J
    Proteins; 2014 Oct; 82(10):2523-37. PubMed ID: 24888727
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.