These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 25936778)

  • 1. The study of transient protein-nanoparticle interactions by solution NMR spectroscopy.
    Assfalg M; Ragona L; Pagano K; D'Onofrio M; Zanzoni S; Tomaselli S; Molinari H
    Biochim Biophys Acta Proteins Proteom; 2016 Jan; 1864(1):102-14. PubMed ID: 25936778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient protein-protein interactions visualized by solution NMR.
    Liu Z; Gong Z; Dong X; Tang C
    Biochim Biophys Acta; 2016 Jan; 1864(1):115-22. PubMed ID: 25896389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of intermolecular NOE interactions in large protein complexes.
    Anglister J; Srivastava G; Naider F
    Prog Nucl Magn Reson Spectrosc; 2016 Nov; 97():40-56. PubMed ID: 27888839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using NMR-detected backbone amide 1H exchange to assess macromolecular crowding effects on globular-protein stability.
    Miklos AC; Li C; Pielak GJ
    Methods Enzymol; 2009; 466():1-18. PubMed ID: 21609855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution NMR views of dynamical ordering of biomacromolecules.
    Ikeya T; Ban D; Lee D; Ito Y; Kato K; Griesinger C
    Biochim Biophys Acta Gen Subj; 2018 Feb; 1862(2):287-306. PubMed ID: 28847507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific Interaction Sites Determine Differential Adsorption of Protein Structural Isomers on Nanoparticle Surfaces.
    Bortot A; Zanzoni S; D'Onofrio M; Assfalg M
    Chemistry; 2018 Apr; 24(22):5911-5919. PubMed ID: 29446497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete relaxation and conformational exchange matrix (CORCEMA) analysis of intermolecular saturation transfer effects in reversibly forming ligand-receptor complexes.
    Jayalakshmi V; Krishna NR
    J Magn Reson; 2002 Mar; 155(1):106-18. PubMed ID: 11945039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR-based approach to measure the free energy of transmembrane helix-helix interactions.
    Mineev KS; Lesovoy DM; Usmanova DR; Goncharuk SA; Shulepko MA; Lyukmanova EN; Kirpichnikov MP; Bocharov EV; Arseniev AS
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):164-72. PubMed ID: 24036227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of protein-ligand interactions by NMR.
    Furukawa A; Konuma T; Yanaka S; Sugase K
    Prog Nucl Magn Reson Spectrosc; 2016 Aug; 96():47-57. PubMed ID: 27573180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing invisible, low-populated States of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding.
    Korzhnev DM; Kay LE
    Acc Chem Res; 2008 Mar; 41(3):442-51. PubMed ID: 18275162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure determination of α-helical membrane proteins by solution-state NMR: emphasis on retinal proteins.
    Gautier A
    Biochim Biophys Acta; 2014 May; 1837(5):578-88. PubMed ID: 23831435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand-receptor binding affinities from saturation transfer difference (STD) NMR spectroscopy: the binding isotherm of STD initial growth rates.
    Angulo J; Enríquez-Navas PM; Nieto PM
    Chemistry; 2010 Jul; 16(26):7803-12. PubMed ID: 20496354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR Spin Relaxation Theory of Biomolecules Undergoing Highly Asymmetric Exchange with Large Interaction Partners.
    Jameson G; Brüschweiler R
    J Chem Theory Comput; 2021 Apr; 17(4):2374-2382. PubMed ID: 33749261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure determination of biological macromolecules in solution using nuclear magnetic resonance spectroscopy.
    Wider G
    Biotechniques; 2000 Dec; 29(6):1278-82, 1284-90, 1292 passim. PubMed ID: 11126132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global Dynamics and Exchange Kinetics of a Protein on the Surface of Nanoparticles Revealed by Relaxation-Based Solution NMR Spectroscopy.
    Ceccon A; Tugarinov V; Bax A; Clore GM
    J Am Chem Soc; 2016 May; 138(18):5789-92. PubMed ID: 27111298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing domain interfaces by NMR.
    Rooney LM; Sachchidanand ; Werner JM
    Methods Mol Biol; 2004; 278():123-38. PubMed ID: 15317995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins.
    Gardner KH; Kay LE
    Annu Rev Biophys Biomol Struct; 1998; 27():357-406. PubMed ID: 9646872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the oligomeric number and intermolecular distances of membrane protein assemblies by anisotropic 1H-driven spin diffusion NMR spectroscopy.
    Luo W; Hong M
    J Am Chem Soc; 2006 Jun; 128(22):7242-51. PubMed ID: 16734478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-field EPR on membrane proteins - crossing the gap to NMR.
    Möbius K; Lubitz W; Savitsky A
    Prog Nucl Magn Reson Spectrosc; 2013 Nov; 75():1-49. PubMed ID: 24160760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR spectroscopy and protein structure determination: applications to drug discovery and development.
    Wishart D
    Curr Pharm Biotechnol; 2005 Apr; 6(2):105-20. PubMed ID: 15853690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.