These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 25937320)

  • 1. Impact insertion of transfer-molded microneedle for localized and minimally invasive ocular drug delivery.
    Song HB; Lee KJ; Seo IH; Lee JY; Lee SM; Kim JH; Kim JH; Ryu W
    J Control Release; 2015 Jul; 209():272-9. PubMed ID: 25937320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracorneal injection of a detachable hybrid microneedle for sustained drug delivery.
    Lee K; Song HB; Cho W; Kim JH; Kim JH; Ryu W
    Acta Biomater; 2018 Oct; 80():48-57. PubMed ID: 30267886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple method of microneedle array fabrication for transdermal drug delivery.
    Kochhar JS; Goh WJ; Chan SY; Kang L
    Drug Dev Ind Pharm; 2013 Feb; 39(2):299-309. PubMed ID: 22519721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parameter optimization toward optimal microneedle-based dermal vaccination.
    van der Maaden K; Varypataki EM; Yu H; Romeijn S; Jiskoot W; Bouwstra J
    Eur J Pharm Sci; 2014 Nov; 64():18-25. PubMed ID: 25151530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapidly dissolving polymeric microneedles for minimally invasive intraocular drug delivery.
    Thakur RR; Tekko IA; Al-Shammari F; Ali AA; McCarthy H; Donnelly RF
    Drug Deliv Transl Res; 2016 Dec; 6(6):800-815. PubMed ID: 27709355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sunitinib inhibits inflammatory corneal lymphangiogenesis.
    Detry B; Blacher S; Erpicum C; Paupert J; Maertens L; Maillard C; Munaut C; Sounni NE; Lambert V; Foidart JM; Rakic JM; Cataldo D; Noël A
    Invest Ophthalmol Vis Sci; 2013 May; 54(5):3082-93. PubMed ID: 23580490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microneedles for transdermal drug delivery.
    Prausnitz MR
    Adv Drug Deliv Rev; 2004 Mar; 56(5):581-7. PubMed ID: 15019747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: Bubble and pedestal microneedle designs.
    Chu LY; Choi SO; Prausnitz MR
    J Pharm Sci; 2010 Oct; 99(10):4228-38. PubMed ID: 20737630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coated microneedles for drug delivery to the eye.
    Jiang J; Gill HS; Ghate D; McCarey BE; Patel SR; Edelhauser HF; Prausnitz MR
    Invest Ophthalmol Vis Sci; 2007 Sep; 48(9):4038-43. PubMed ID: 17724185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Troy Microneedle: A Rapidly Separating, Dissolving Microneedle Formed by Cyclic Contact and Drying on the Pillar (CCDP).
    Kim M; Yang H; Kim S; Lee C; Jung H
    PLoS One; 2015; 10(8):e0136513. PubMed ID: 26308945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corneal delivery of besifloxacin using rapidly dissolving polymeric microneedles.
    Bhatnagar S; Saju A; Cheerla KD; Gade SK; Garg P; Venuganti VVK
    Drug Deliv Transl Res; 2018 Jun; 8(3):473-483. PubMed ID: 29288357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microneedle technologies for (trans)dermal drug and vaccine delivery.
    van der Maaden K; Jiskoot W; Bouwstra J
    J Control Release; 2012 Jul; 161(2):645-55. PubMed ID: 22342643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes.
    Wu M; Zhang Y; Huang H; Li J; Liu H; Guo Z; Xue L; Liu S; Lei Y
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111299. PubMed ID: 32919660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the delivery systems using a microneedle array on the permeation of a hydrophilic molecule, calcein.
    Oh JH; Park HH; Do KY; Han M; Hyun DH; Kim CG; Kim CH; Lee SS; Hwang SJ; Shin SC; Cho CW
    Eur J Pharm Biopharm; 2008 Aug; 69(3):1040-5. PubMed ID: 18411045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tapered conical polymer microneedles fabricated using an integrated lens technique for transdermal drug delivery.
    Park JH; Yoon YK; Choi SO; Prausnitz MR; Allen MG
    IEEE Trans Biomed Eng; 2007 May; 54(5):903-13. PubMed ID: 17518288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microneedle-based drug delivery: studies on delivery parameters and biocompatibility.
    Wu Y; Qiu Y; Zhang S; Qin G; Gao Y
    Biomed Microdevices; 2008 Oct; 10(5):601-10. PubMed ID: 18324474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatially discrete thermal drawing of biodegradable microneedles for vascular drug delivery.
    Choi CK; Lee KJ; Youn YN; Jang EH; Kim W; Min BK; Ryu W
    Eur J Pharm Biopharm; 2013 Feb; 83(2):224-33. PubMed ID: 23201049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissolvable microneedle patch containing doxorubicin and docetaxel is effective in 4T1 xenografted breast cancer mouse model.
    Bhatnagar S; Bankar NG; Kulkarni MV; Venuganti VVK
    Int J Pharm; 2019 Feb; 556():263-275. PubMed ID: 30557681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coated microneedles for transdermal delivery.
    Gill HS; Prausnitz MR
    J Control Release; 2007 Feb; 117(2):227-37. PubMed ID: 17169459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-dermal applications of microneedle drug delivery systems.
    Panda A; Matadh VA; Suresh S; Shivakumar HN; Murthy SN
    Drug Deliv Transl Res; 2022 Jan; 12(1):67-78. PubMed ID: 33629222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.