BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 25937438)

  • 1. Loss of RPS41 but not its paralog RPS42 results in altered growth, filamentation and transcriptome changes in Candida albicans.
    Lu H; Yao XW; Whiteway M; Xiong J; Liao ZB; Jiang YY; Cao YY
    Fungal Genet Biol; 2015 Jul; 80():31-42. PubMed ID: 25937438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of RPS41 in Biofilm Formation, Virulence, and Hydrogen Peroxide Sensitivity in Candida albicans.
    Lu H; Xiong J; Shang Q; Jiang Y; Cao Y
    Curr Microbiol; 2016 Jun; 72(6):783-7. PubMed ID: 26952720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antifungal effect of Echinophora platyloba on expression of CDR1 and CDR2 genes in fluconazole-resistant Candida albicans.
    Khajeh E; Hosseini Shokouh SJ; Rajabibazl M; Roudbary M; Rafiei S; Aslani P; Farahnejad Z
    Br J Biomed Sci; 2016; 73(1):44-8. PubMed ID: 27182677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Candida albicans MTLalpha tup1Delta mutants can reversibly switch to mating-competent, filamentous growth forms.
    Park YN; Morschhäuser J
    Mol Microbiol; 2005 Dec; 58(5):1288-302. PubMed ID: 16313617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deletion of the high-affinity cAMP phosphodiesterase encoded by PDE2 affects stress responses and virulence in Candida albicans.
    Wilson D; Tutulan-Cunita A; Jung W; Hauser NC; Hernandez R; Williamson T; Piekarska K; Rupp S; Young T; Stateva L
    Mol Microbiol; 2007 Aug; 65(4):841-56. PubMed ID: 17614954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Candida albicans VPS1 contributes to protease secretion, filamentation, and biofilm formation.
    Bernardo SM; Khalique Z; Kot J; Jones JK; Lee SA
    Fungal Genet Biol; 2008 Jun; 45(6):861-77. PubMed ID: 18296085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulated overexpression of CDR1 in Candida albicans confers multidrug resistance.
    Niimi M; Niimi K; Takano Y; Holmes AR; Fischer FJ; Uehara Y; Cannon RD
    J Antimicrob Chemother; 2004 Dec; 54(6):999-1006. PubMed ID: 15486081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cph1p negatively regulates MDR1 involved in drug resistance in Candida albicans.
    Lo HJ; Tseng KY; Kao YY; Tsao MY; Lo HL; Yang YL
    Int J Antimicrob Agents; 2015 Jun; 45(6):617-21. PubMed ID: 25802233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional analysis of the phospholipase C gene CaPLC1 and two unusual phospholipase C genes, CaPLC2 and CaPLC3, of Candida albicans.
    Kunze D; Melzer I; Bennett D; Sanglard D; MacCallum D; Nörskau J; Coleman DC; Odds FC; Schäfer W; Hube B
    Microbiology (Reading); 2005 Oct; 151(Pt 10):3381-3394. PubMed ID: 16207920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RTA2, a novel gene involved in azole resistance in Candida albicans.
    Jia XM; Ma ZP; Jia Y; Gao PH; Zhang JD; Wang Y; Xu YG; Wang L; Cao YY; Cao YB; Zhang LX; Jiang YY
    Biochem Biophys Res Commun; 2008 Sep; 373(4):631-6. PubMed ID: 18601908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel regulatory function for the CCAAT-binding factor in Candida albicans.
    Johnson DC; Cano KE; Kroger EC; McNabb DS
    Eukaryot Cell; 2005 Oct; 4(10):1662-76. PubMed ID: 16215174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global transcriptional profiling of Candida albicans cwt1 null mutant.
    Moreno I; Castillo L; Sentandreu R; Valentin E
    Yeast; 2007 Apr; 24(4):357-70. PubMed ID: 17238235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of Viable Candida albicans Mutants Lacking the "Essential" Protein Kinase Snf1 by Inducible Gene Deletion.
    Mottola A; Schwanfelder S; Morschhäuser J
    mSphere; 2020 Aug; 5(4):. PubMed ID: 32817381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcript profiling reveals rewiring of iron assimilation gene expression in Candida albicans and C. dubliniensis.
    Moran GP
    FEMS Yeast Res; 2012 Dec; 12(8):918-23. PubMed ID: 22888912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Candida albicans Tpk1p and Tpk2p isoforms differentially regulate pseudohyphal development, biofilm structure, cell aggregation and adhesins expression.
    Giacometti R; Kronberg F; Biondi RM; Passeron S
    Yeast; 2011 Apr; 28(4):293-308. PubMed ID: 21456055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antagonistic interplay of Swi1 and Tup1 on filamentous growth of Candida albicans.
    Mao X; Li Y; Wang H; Cao F; Chen J
    FEMS Microbiol Lett; 2008 Aug; 285(2):233-41. PubMed ID: 18564337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of Cor33p, a novel protein implicated in tolerance towards oxidative stress in Candida albicans.
    Sohn K; Roehm M; Urban C; Saunders N; Rothenstein D; Lottspeich F; Schröppel K; Brunner H; Rupp S
    Eukaryot Cell; 2005 Dec; 4(12):2160-9. PubMed ID: 16339733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Candida albicans Msi3p, a homolog of the Saccharomyces cerevisiae Sse1p of the Hsp70 family, is involved in cell growth and fluconazole tolerance.
    Nagao J; Cho T; Uno J; Ueno K; Imayoshi R; Nakayama H; Chibana H; Kaminishi H
    FEMS Yeast Res; 2012 Sep; 12(6):728-37. PubMed ID: 22713118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A functional analysis of the Candida albicans homolog of Saccharomyces cerevisiae VPS4.
    Lee SA; Jones J; Khalique Z; Kot J; Alba M; Bernardo S; Seghal A; Wong B
    FEMS Yeast Res; 2007 Sep; 7(6):973-85. PubMed ID: 17506830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Candida albicans Sfl1 suppresses flocculation and filamentation.
    Bauer J; Wendland J
    Eukaryot Cell; 2007 Oct; 6(10):1736-44. PubMed ID: 17766464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.