These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 25937690)
1. Direct fermentation of potato starch and potato residues to lactic acid by Smerilli M; Neureiter M; Wurz S; Haas C; Frühauf S; Fuchs W J Chem Technol Biotechnol; 2015 Apr; 90(4):648-657. PubMed ID: 25937690 [TBL] [Abstract][Full Text] [Related]
2. The effect of adaptation of Lactobacillus amylovorus to increasing concentrations of sweet potato starch on the production of lactic acid for its potential use in the treatment of cannery waste. Akoetey W; Morawicki R J Environ Sci Health B; 2018; 53(12):802-809. PubMed ID: 30199316 [TBL] [Abstract][Full Text] [Related]
3. Amylolytic bacterial lactic acid fermentation - a review. Reddy G; Altaf M; Naveena BJ; Venkateshwar M; Kumar EV Biotechnol Adv; 2008; 26(1):22-34. PubMed ID: 17884326 [TBL] [Abstract][Full Text] [Related]
4. Direct fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus. Huang LP; Jin B; Lant P Bioprocess Biosyst Eng; 2005 Jul; 27(4):229-38. PubMed ID: 15947951 [TBL] [Abstract][Full Text] [Related]
5. Integrated process of starch ethanol and cellulosic lactic acid for ethanol and lactic acid production. Tang Y; Zhu L; Zhang W; Shang X; Jiang J Appl Microbiol Biotechnol; 2013 Mar; 97(5):1923-32. PubMed ID: 23053107 [TBL] [Abstract][Full Text] [Related]
6. Lactic acid production with undefined mixed culture fermentation of potato peel waste. Liang S; McDonald AG; Coats ER Waste Manag; 2014 Nov; 34(11):2022-7. PubMed ID: 25127412 [TBL] [Abstract][Full Text] [Related]
7. Utilizing Gelatinized Starchy Waste from Rice Noodle Factory as Substrate for L(+)-Lactic Acid Production by Amylolytic Lactic Acid Bacterium Enterococcus faecium K-1. Unban K; Khanongnuch R; Kanpiengjai A; Shetty K; Khanongnuch C Appl Biochem Biotechnol; 2020 Oct; 192(2):353-366. PubMed ID: 32382944 [TBL] [Abstract][Full Text] [Related]
8. An economic approach for L-(+) lactic acid fermentation by Lactobacillus amylophilus GV6 using inexpensive carbon and nitrogen sources. Altaf M; Venkateshwar M; Srijana M; Reddy G J Appl Microbiol; 2007 Aug; 103(2):372-80. PubMed ID: 17650197 [TBL] [Abstract][Full Text] [Related]
9. Fermentation by amylolytic lactic acid bacteria and consequences for starch digestibility of plantain, breadfruit, and sweet potato flours. Haydersah J; Chevallier I; Rochette I; Mouquet-Rivier C; Picq C; Marianne-Pépin T; Icard-Vernière C; Guyot JP J Food Sci; 2012 Aug; 77(8):M466-72. PubMed ID: 22860595 [TBL] [Abstract][Full Text] [Related]
10. Production of Raw Starch-Digesting Amylolytic Preparation in Gęsicka A; Borkowska M; Białas W; Kaczmarek P; Celińska E Microorganisms; 2020 May; 8(5):. PubMed ID: 32408498 [TBL] [Abstract][Full Text] [Related]
11. Use of inexpensive nitrogen sources and starch for L(+) lactic acid production in anaerobic submerged fermentation. Altaf M; Naveena BJ; Reddy G Bioresour Technol; 2007 Feb; 98(3):498-503. PubMed ID: 16563750 [TBL] [Abstract][Full Text] [Related]
12. Efficient production of L-lactic acid by newly isolated thermophilic Bacillus coagulans WCP10-4 with high glucose tolerance. Zhou X; Ye L; Wu JC Appl Microbiol Biotechnol; 2013 May; 97(10):4309-14. PubMed ID: 23354450 [TBL] [Abstract][Full Text] [Related]
13. Batch fermentations on synthetic mixed sugar and starch medium with amylolytic lactic acid bacteria. Thomsen MH; Guyot JP; Kiel P Appl Microbiol Biotechnol; 2007 Mar; 74(3):540-6. PubMed ID: 17109171 [TBL] [Abstract][Full Text] [Related]
14. Direct fermentation of raw starch using a Kluyveromyces marxianus strain that expresses glucoamylase and alpha-amylase to produce ethanol. Wang R; Wang D; Gao X; Hong J Biotechnol Prog; 2014; 30(2):338-47. PubMed ID: 24478139 [TBL] [Abstract][Full Text] [Related]
15. Direct production of L+-lactic acid from starch and food wastes using Lactobacillus manihotivorans LMG18011. Ohkouchi Y; Inoue Y Bioresour Technol; 2006 Sep; 97(13):1554-62. PubMed ID: 16051483 [TBL] [Abstract][Full Text] [Related]
16. Use of starch and potato peel waste for perchlorate bioreduction in water. Okeke BC; Frankenberger WT Sci Total Environ; 2005 Jul; 347(1-3):35-45. PubMed ID: 16084965 [TBL] [Abstract][Full Text] [Related]
17. Bacillus stearothermophilus for thermophilic production of L-lactic acid. Danner H; Neureiter M; Madzingaidzo L; Gartner M; Braun R Appl Biochem Biotechnol; 1998; 70-72():895-903. PubMed ID: 18576053 [TBL] [Abstract][Full Text] [Related]
18. Enhanced biosynthesis of poly(3-hydroxybutyrate) from potato starch by Bacillus cereus strain 64-INS in a laboratory-scale fermenter. Ali I; Jamil N Prep Biochem Biotechnol; 2014; 44(8):822-33. PubMed ID: 24279753 [TBL] [Abstract][Full Text] [Related]
19. An integrated bioconversion process for production of L-lactic acid from starchy potato feedstocks. Tsai SP; Moon SH Appl Biochem Biotechnol; 1998; 70-72():417-28. PubMed ID: 18576010 [TBL] [Abstract][Full Text] [Related]
20. Revisiting the production of L( +)-lactic acid from vine shoots: bioconversion improvements by employing thermotolerant bacteria. Garita-Cambronero J; Hijosa-Valsero M; Paniagua-García AI; Díez-Antolínez R Appl Microbiol Biotechnol; 2021 Dec; 105(24):9385-9402. PubMed ID: 34799761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]