BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 25937846)

  • 1. Catalytic Properties of Unsupported Palladium Nanoparticle Surfaces Capped with Small Organic Ligands.
    Gavia DJ; Shon YS
    ChemCatChem; 2015 Mar; 7(6):892-900. PubMed ID: 25937846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water-Soluble Noble Metal Nanoparticle Catalysts Capped with Small Organic Molecules for Organic Transformations in Water.
    Alam AM; Shon YS
    ACS Appl Nano Mater; 2021 Apr; 4(4):3294-3318. PubMed ID: 34095774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Noncovalent Interactions on the Catalytic Activity of Unsupported Colloidal Palladium Nanoparticles Stabilized with Thiolate Ligands.
    Maung MS; Shon YS
    J Phys Chem C Nanomater Interfaces; 2017 Sep; 121(38):20882-20891. PubMed ID: 29326755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic interpretation of selective catalytic hydrogenation and isomerization of alkenes and dienes by ligand deactivated Pd nanoparticles.
    Zhu JS; Shon YS
    Nanoscale; 2015 Nov; 7(42):17786-90. PubMed ID: 26455381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proximity Effects of Methyl Group on Ligand Steric Interactions and Colloidal Stability of Palladium Nanoparticles.
    Tieu P; Nguyen V; Shon YS
    Front Chem; 2020; 8():599. PubMed ID: 32754577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Graphene Oxide Supports on Solution-Phase Catalysis of Thiolate-Protected Palladium Nanoparticles in Water.
    Chen V; Pan H; Jacobs R; Derakhshan S; Shon YS
    New J Chem; 2017 Jan; 41(1):177-183. PubMed ID: 28652688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pd Nanoparticle-Catalyzed Isomerization vs Hydrogenation of Allyl Alcohol: Solvent-Dependent Regioselectivity.
    Sadeghmoghaddam E; Gu H; Shon YS
    ACS Catal; 2012 Sep; 2(9):1838-1845. PubMed ID: 27642537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of Alkanethiolate-Capped Metal Nanoparticles Using Alkyl Thiosulfate Ligand Precursors: A Method to Generate Promising Reagents for Selective Catalysis.
    San KA; Shon YS
    Nanomaterials (Basel); 2018 May; 8(5):. PubMed ID: 29783714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Homeopathic" palladium nanoparticle catalysis of cross carbon-carbon coupling reactions.
    Deraedt C; Astruc D
    Acc Chem Res; 2014 Feb; 47(2):494-503. PubMed ID: 24215156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the Catalytic Activity and Selectivity of Pd Nanoparticles Using Ligand-Modified Supports and Surfaces.
    da Silva FP; Fiorio JL; Rossi LM
    ACS Omega; 2017 Sep; 2(9):6014-6022. PubMed ID: 31457853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalysis by unsupported skeletal gold catalysts.
    Wittstock A; Bäumer M
    Acc Chem Res; 2014 Mar; 47(3):731-9. PubMed ID: 24266888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alkanethiolate-Capped Palladium Nanoparticles for Regio- and Stereoselective Hydrogenation of Allenes.
    Chen TA; Shon YS
    Catalysts; 2018 Oct; 8(10):. PubMed ID: 30733870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unsupported Micellar Palladium Nanoparticles for Biphasic Hydrogenation and Isomerization of Hydrophobic Allylic Alcohols in Water.
    Maung MS; Dinh T; Salazar C; Shon YS
    Colloids Surf A Physicochem Eng Asp; 2017 Jan; 513():367-372. PubMed ID: 28579696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis.
    Astruc D; Lu F; Aranzaes JR
    Angew Chem Int Ed Engl; 2005 Dec; 44(48):7852-72. PubMed ID: 16304662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water-soluble Pd nanoparticles synthesized from ω-carboxyl-S-alkanethiosulfate ligand precursors as unimolecular micelle catalysts.
    Gavia DJ; Maung MS; Shon YS
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12432-40. PubMed ID: 24246150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ylide-Substituted Phosphines: A Platform of Strong Donor Ligands for Gold Catalysis and Palladium-Catalyzed Coupling Reactions.
    Lapointe S; Sarbajna A; Gessner VH
    Acc Chem Res; 2022 Mar; 55(5):770-782. PubMed ID: 35170935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Building upon patterned organic monolayers produced via catalytic stamp lithography.
    Mizuno H; Buriak JM
    ACS Appl Mater Interfaces; 2010 Aug; 2(8):2301-7. PubMed ID: 20735101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of supported polysugar-stabilized palladium nanoparticle catalysts for enhanced hydrodechlorination of trichloroethylene.
    Bacik DB; Zhang M; Zhao D; Roberts CB; Seehra MS; Singh V; Shah N
    Nanotechnology; 2012 Jul; 23(29):294004. PubMed ID: 22743584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Palladium-catalyzed Suzuki-Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands.
    Martin R; Buchwald SL
    Acc Chem Res; 2008 Nov; 41(11):1461-73. PubMed ID: 18620434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in sustainable N-heterocyclic carbene-Pd(II)-pyridine (PEPPSI) catalysts: A review.
    Peddiahgari Vasu GR; Motakatla Venkata KR; Kakarla RR; Ranganath KVS; Aminabhavi TM
    Environ Res; 2023 May; 225():115515. PubMed ID: 36842701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.