These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 25937889)
1. SMASH - semi-automatic muscle analysis using segmentation of histology: a MATLAB application. Smith LR; Barton ER Skelet Muscle; 2014; 4():21. PubMed ID: 25937889 [TBL] [Abstract][Full Text] [Related]
2. Automated muscle histopathology analysis using CellProfiler. Lau YS; Xu L; Gao Y; Han R Skelet Muscle; 2018 Oct; 8(1):32. PubMed ID: 30336774 [TBL] [Abstract][Full Text] [Related]
3. MyoSight-semi-automated image analysis of skeletal muscle cross sections. Babcock LW; Hanna AD; Agha NH; Hamilton SL Skelet Muscle; 2020 Nov; 10(1):33. PubMed ID: 33198807 [TBL] [Abstract][Full Text] [Related]
4. Histological parameters for the quantitative assessment of muscular dystrophy in the mdx-mouse. Briguet A; Courdier-Fruh I; Foster M; Meier T; Magyar JP Neuromuscul Disord; 2004 Oct; 14(10):675-82. PubMed ID: 15351425 [TBL] [Abstract][Full Text] [Related]
5. A new web-based method for automated analysis of muscle histology. Pertl C; Eblenkamp M; Pertl A; Pfeifer S; Wintermantel E; Lochmüller H; Walter MC; Krause S; Thirion C BMC Musculoskelet Disord; 2013 Jan; 14():26. PubMed ID: 23324401 [TBL] [Abstract][Full Text] [Related]
6. A User-Friendly Approach for Routine Histopathological and Morphometric Analysis of Skeletal Muscle Using CellProfiler Software. Laghi V; Ricci V; De Santa F; Torcinaro A Diagnostics (Basel); 2022 Feb; 12(3):. PubMed ID: 35328114 [TBL] [Abstract][Full Text] [Related]
7. Automated high-content morphological analysis of muscle fiber histology. Miazaki M; Viana MP; Yang Z; Comin CH; Wang Y; da F Costa L; Xu X Comput Biol Med; 2015 Aug; 63():28-35. PubMed ID: 26004825 [TBL] [Abstract][Full Text] [Related]
8. Electron microscopic and autoradiographic characterization of hindlimb muscle regeneration in the mdx mouse. Anderson JE; Ovalle WK; Bressler BH Anat Rec; 1987 Nov; 219(3):243-57. PubMed ID: 3425943 [TBL] [Abstract][Full Text] [Related]
9. Automated image-analysis method for the quantification of fiber morphometry and fiber type population in human skeletal muscle. Reyes-Fernandez PC; Periou B; Decrouy X; Relaix F; Authier FJ Skelet Muscle; 2019 May; 9(1):15. PubMed ID: 31133066 [TBL] [Abstract][Full Text] [Related]
10. Accumulation of collagen and altered fiber-type ratios as indicators of abnormal muscle gene expression in the mdx dystrophic mouse. Marshall PA; Williams PE; Goldspink G Muscle Nerve; 1989 Jul; 12(7):528-37. PubMed ID: 2779602 [TBL] [Abstract][Full Text] [Related]
11. Differential expression of myosin heavy chain isoforms in the masticatory muscles of dystrophin-deficient mice. Spassov A; Gredes T; Gedrange T; Lucke S; Morgenstern S; Pavlovic D; Kunert-Keil C Eur J Orthod; 2011 Dec; 33(6):613-9. PubMed ID: 21187529 [TBL] [Abstract][Full Text] [Related]
12. Myonucleus-related properties in soleus muscle fibers of mdx mice. Terada M; Lan YB; Kawano F; Ohira T; Higo Y; Nakai N; Imaizumi K; Ogura A; Nishimoto N; Adachi Y; Ohira Y Cells Tissues Organs; 2010; 191(3):248-59. PubMed ID: 19776548 [TBL] [Abstract][Full Text] [Related]
13. MuscleJ: a high-content analysis method to study skeletal muscle with a new Fiji tool. Mayeuf-Louchart A; Hardy D; Thorel Q; Roux P; Gueniot L; Briand D; Mazeraud A; Bouglé A; Shorte SL; Staels B; Chrétien F; Duez H; Danckaert A Skelet Muscle; 2018 Aug; 8(1):25. PubMed ID: 30081940 [TBL] [Abstract][Full Text] [Related]
14. Dystrophin deficiency in canine X-linked muscular dystrophy in Japan (CXMDJ) alters myosin heavy chain expression profiles in the diaphragm more markedly than in the tibialis cranialis muscle. Yuasa K; Nakamura A; Hijikata T; Takeda S BMC Musculoskelet Disord; 2008 Jan; 9():1. PubMed ID: 18182116 [TBL] [Abstract][Full Text] [Related]
15. Targeted inhibition of Ca2+ /calmodulin signaling exacerbates the dystrophic phenotype in mdx mouse muscle. Chakkalakal JV; Michel SA; Chin ER; Michel RN; Jasmin BJ Hum Mol Genet; 2006 May; 15(9):1423-35. PubMed ID: 16551657 [TBL] [Abstract][Full Text] [Related]
16. Microscopic image analysis for quantitative characterization of muscle fiber type composition. Sertel O; Dogdas B; Chiu CS; Gurcan MN Comput Med Imaging Graph; 2011; 35(7-8):616-28. PubMed ID: 21342753 [TBL] [Abstract][Full Text] [Related]
17. Quantitative assessment of muscle damage in the mdx mouse model of Duchenne muscular dystrophy using polarization-sensitive optical coherence tomography. Yang X; Chin L; Klyen BR; Shavlakadze T; McLaughlin RA; Grounds MD; Sampson DD J Appl Physiol (1985); 2013 Nov; 115(9):1393-401. PubMed ID: 23990241 [TBL] [Abstract][Full Text] [Related]
18. A neural network approach to analyze cross-sections of muscle fibers in pathological images. Li Y; Yang Z; Wang Y; Cao X; Xu X Comput Biol Med; 2019 Jan; 104():97-104. PubMed ID: 30463027 [TBL] [Abstract][Full Text] [Related]
19. Skeletal muscle fibrosis in the mdx/utrn+/- mouse validates its suitability as a murine model of Duchenne muscular dystrophy. Gutpell KM; Hrinivich WT; Hoffman LM PLoS One; 2015; 10(1):e0117306. PubMed ID: 25607927 [TBL] [Abstract][Full Text] [Related]
20. In vivo anisotropic mechanical properties of dystrophic skeletal muscles measured by anisotropic MR elastographic imaging: the mdx mouse model of muscular dystrophy. Qin EC; Jugé L; Lambert SA; Paradis V; Sinkus R; Bilston LE Radiology; 2014 Dec; 273(3):726-35. PubMed ID: 25105354 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]