BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

560 related articles for article (PubMed ID: 25937909)

  • 1. Lake size and fish diversity determine resource use and trophic position of a top predator in high-latitude lakes.
    Eloranta AP; Kahilainen KK; Amundsen PA; Knudsen R; Harrod C; Jones RI
    Ecol Evol; 2015 Apr; 5(8):1664-75. PubMed ID: 25937909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resource Partitioning in Food, Space and Time between Arctic Charr (Salvelinus alpinus), Brown Trout (Salmo trutta) and European Whitefish (Coregonus lavaretus) at the Southern Edge of Their Continuous Coexistence.
    Jensen H; Kiljunen M; Knudsen R; Amundsen PA
    PLoS One; 2017; 12(1):e0170582. PubMed ID: 28122061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Community structure affects trophic ontogeny in a predatory fish.
    Sánchez-Hernández J; Eloranta AP; Finstad AG; Amundsen PA
    Ecol Evol; 2017 Jan; 7(1):358-367. PubMed ID: 28070298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trophic structure of apex fish communities in closed versus leaky lakes of arctic Alaska.
    Klobucar SL; Budy P
    Oecologia; 2020 Nov; 194(3):491-504. PubMed ID: 33057839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual fuels: intra-annual variation in the relative importance of benthic and pelagic resources to maintenance, growth and reproduction in a generalist salmonid fish.
    Hayden B; Harrod C; Kahilainen KK
    J Anim Ecol; 2014 Nov; 83(6):1501-12. PubMed ID: 24738779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural resilience in Arctic charr Salvelinus alpinus: life history, spatial and dietary alterations along gradients of interspecific interactions.
    Hammar J
    J Fish Biol; 2014 Jul; 85(1):81-118. PubMed ID: 24754706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seasonal and ontogenetic shifts in the diet of Arctic charr Salvelinus alpinus in a subarctic lake.
    Eloranta AP; Kahilainen KK; Jones RI
    J Fish Biol; 2010 Jul; 77(1):80-97. PubMed ID: 20646140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lake morphometry and resource polymorphism determine niche segregation between cool- and cold-water-adapted fish.
    Hayden B; Harrod C; Kahilaineni KK
    Ecology; 2014 Feb; 95(2):538-52. PubMed ID: 24669746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Community structure influences species' abundance along environmental gradients.
    Eloranta AP; Helland IP; Sandlund OT; Hesthagen T; Ugedal O; Finstad AG
    J Anim Ecol; 2016 Jan; 85(1):273-82. PubMed ID: 26475991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Species interactions, environmental gradients and body size shape population niche width.
    Eloranta AP; Finstad AG; Sandlund OT; Knudsen R; Kuparinen A; Amundsen PA
    J Anim Ecol; 2022 Jan; 91(1):154-169. PubMed ID: 34657292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bottom-up and top-down effects of browning and warming on shallow lake food webs.
    Vasconcelos FR; Diehl S; Rodríguez P; Hedström P; Karlsson J; Byström P
    Glob Chang Biol; 2019 Feb; 25(2):504-521. PubMed ID: 30430702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From clear lakes to murky waters - tracing the functional response of high-latitude lake communities to concurrent 'greening' and 'browning'.
    Hayden B; Harrod C; Thomas SM; Eloranta AP; Myllykangas JP; Siwertsson A; Praebel K; Knudsen R; Amundsen PA; Kahilainen KK
    Ecol Lett; 2019 May; 22(5):807-816. PubMed ID: 30793453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nearshore energy subsidies support Lake Michigan fishes and invertebrates following major changes in food web structure.
    Turschak BA; Bunnell D; Czesny S; Höök TO; Janssen J; Warner D; Bootsma HA
    Ecology; 2014 May; 95(5):1243-52. PubMed ID: 25000756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life at the top: Lake ecotype influences the foraging pattern, metabolic costs and life history of an apex fish predator.
    Cruz-Font L; Shuter BJ; Blanchfield PJ; Minns CK; Rennie MD
    J Anim Ecol; 2019 May; 88(5):702-716. PubMed ID: 30712263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Food web differences between two neighboring tropical high mountain lakes and the influence of introducing a new top predator.
    Jiménez-Seinos JL; Alcocer J; Planas D
    PLoS One; 2023; 18(6):e0287066. PubMed ID: 37310987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New parasites and predators follow the introduction of two fish species to a subarctic lake: implications for food-web structure and functioning.
    Amundsen PA; Lafferty KD; Knudsen R; Primicerio R; Kristoffersen R; Klemetsen A; Kuris AM
    Oecologia; 2013 Apr; 171(4):993-1002. PubMed ID: 23053223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-term apparent mutualism drives responses of aquatic prey to increasing productivity.
    Chaguaceda F; Scharnweber K; Dalman E; Tranvik LJ; Eklöv P
    J Anim Ecol; 2021 Apr; 90(4):834-845. PubMed ID: 33340096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ecomorphological divergence drives differential mercury bioaccumulation in polymorphic European whitefish (Coregonus lavaretus) populations of subarctic lakes.
    Kahilainen KK; Thomas SM; Nystedt EKM; Keva O; Malinen T; Hayden B
    Sci Total Environ; 2017 Dec; 599-600():1768-1778. PubMed ID: 28545204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioenergy landscapes drive trophic shifts in generalist ants.
    Helms JA; Roeder KA; Ijelu SE; Ratcliff I; Haddad NM
    J Anim Ecol; 2021 Mar; 90(3):738-750. PubMed ID: 33314089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Restoring piscivorous fish populations in the Laurentian Great Lakes causes seabird dietary change.
    Hebert CE; Weseloh DV; Idrissi A; Arts MT; O'Gorman R; Gorman OT; Locke B; Madenjian CP; Roseman EF
    Ecology; 2008 Apr; 89(4):891-7. PubMed ID: 18481511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.