These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 25937928)

  • 1. Bivariate Gaussian bridges: directional factorization of diffusion in Brownian bridge models.
    Kranstauber B; Safi K; Bartumeus F
    Mov Ecol; 2014; 2(1):5. PubMed ID: 25937928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement.
    Kranstauber B; Kays R; Lapoint SD; Wikelski M; Safi K
    J Anim Ecol; 2012 Jul; 81(4):738-46. PubMed ID: 22348740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling animal movement as Brownian bridges with covariates.
    Kranstauber B
    Mov Ecol; 2019; 7():22. PubMed ID: 31293785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyzing animal movements using Brownian bridges.
    Horne JS; Garton EO; Krone SM; Lewis JS
    Ecology; 2007 Sep; 88(9):2354-63. PubMed ID: 17918412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deriving movement properties and the effect of the environment from the Brownian bridge movement model in monkeys and birds.
    Buchin K; Sijben S; van Loon EE; Sapir N; Mercier S; Marie Arseneau TJ; Willems EP
    Mov Ecol; 2015; 3(1):18. PubMed ID: 26078868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic approach to space and habitat use based on biased random bridges.
    Benhamou S
    PLoS One; 2011 Jan; 6(1):e14592. PubMed ID: 21297869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On modeling animal movements using Brownian motion with measurement error.
    Pozdnyakov V; Meyer T; Wang YB; Yan J
    Ecology; 2014 Feb; 95(2):247-53. PubMed ID: 24669719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reptiles on the wrong track? Moving beyond traditional estimators with dynamic Brownian Bridge Movement Models.
    Silva I; Crane M; Marshall BM; Strine CT
    Mov Ecol; 2020; 8():43. PubMed ID: 33133609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A random walk description of individual animal movement accounting for periods of rest.
    Tilles PF; Petrovskii SV; Natti PL
    R Soc Open Sci; 2016 Nov; 3(11):160566. PubMed ID: 28018645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dividing organelle tracks into Brownian and motor-driven intervals by variational maximization of the Bayesian evidence.
    Martin MJ; Smelser AM; Holzwarth G
    Eur Biophys J; 2016 Apr; 45(3):269-77. PubMed ID: 26538332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Lévy flight foraging hypothesis in a pelagic seabird.
    Focardi S; Cecere JG
    J Anim Ecol; 2014 Mar; 83(2):353-64. PubMed ID: 24102157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized Pareto for Pattern-Oriented Random Walk Modelling of Organisms' Movements.
    Bertrand S; Joo R; Fablet R
    PLoS One; 2015; 10(7):e0132231. PubMed ID: 26172045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using dynamic Brownian bridge movement modelling to measure temporal patterns of habitat selection.
    Byrne ME; Clint McCoy J; Hinton JW; Chamberlain MJ; Collier BA
    J Anim Ecol; 2014 Sep; 83(5):1234-43. PubMed ID: 24460723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lévy meets poisson: a statistical artifact may lead to erroneous recategorization of Lévy walk as Brownian motion.
    Gautestad AO
    Am Nat; 2013 Mar; 181(3):440-50. PubMed ID: 23448891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hidden Markov movement model for rapidly identifying behavioral states from animal tracks.
    Whoriskey K; Auger-Méthé M; Albertsen CM; Whoriskey FG; Binder TR; Krueger CC; Mills Flemming J
    Ecol Evol; 2017 Apr; 7(7):2112-2121. PubMed ID: 28405277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the continuum between corridors and barriers to animal movements using Step Selection Functions and Randomized Shortest Paths.
    Panzacchi M; Van Moorter B; Strand O; Saerens M; Kivimäki I; St Clair CC; Herfindal I; Boitani L
    J Anim Ecol; 2016 Jan; 85(1):32-42. PubMed ID: 25950737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covering Ground: Movement Patterns and Random Walk Behavior in Aquilonastra anomala Sea Stars.
    Lohmann AC; Evangelista D; Waldrop LD; Mah CL; Hedrick TL
    Biol Bull; 2016 Oct; 231(2):130-141. PubMed ID: 27820905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the interplay between small and large scales movements in a neotropical small mammal.
    Brigatti E; Ríos-Uzeda B; Vieira MV
    Mov Ecol; 2024 Mar; 12(1):23. PubMed ID: 38528635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying the degree of persistence in random amoeboid motion based on the Hurst exponent of fractional Brownian motion.
    Makarava N; Menz S; Theves M; Huisinga W; Beta C; Holschneider M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042703. PubMed ID: 25375519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rectified brownian transport in corrugated channels: Fractional brownian motion and Lévy flights.
    Ai BQ; Shao ZG; Zhong WR
    J Chem Phys; 2012 Nov; 137(17):174101. PubMed ID: 23145711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.