These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 25938145)

  • 21. Influence of the indirect restoration design on the fracture resistance: a finite element study.
    Mei ML; Chen YM; Li H; Chu CH
    Biomed Eng Online; 2016 Jan; 15(1):3. PubMed ID: 26758615
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of different restoration techniques on the fracture resistance of endodontically-treated molars.
    Cobankara FK; Unlu N; Cetin AR; Ozkan HB
    Oper Dent; 2008; 33(5):526-33. PubMed ID: 18833859
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fatigue behavior and stress distribution of molars restored with MOD inlays with and without deep margin elevation.
    Grassi EDA; de Andrade GS; Tribst JPM; Machry RV; Valandro LF; Ramos NC; Bresciani E; Saavedra GSFA
    Clin Oral Investig; 2022 Mar; 26(3):2513-2526. PubMed ID: 34643807
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Premolar cuspal flexure as a function of restorative material and occlusal contact location.
    Magne P; Oganesyan T
    Quintessence Int; 2009 May; 40(5):363-70. PubMed ID: 19582240
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of dental restoration depth, internal cavity angle, and material properties on biomechanical resistance of a treated molar tooth.
    Babaei B; Cella S; Farrar P; Prentice L; Prusty BG
    J Mech Behav Biomed Mater; 2022 Sep; 133():105305. PubMed ID: 35700676
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of restorative material and proximal cavity design on the fracture resistance of MOD inlay restoration.
    Liu X; Fok A; Li H
    Dent Mater; 2014 Mar; 30(3):327-33. PubMed ID: 24424091
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of cavity preparation design and ceramic type on the stress distribution, strain and fracture resistance of CAD/CAM onlays in molars.
    Vianna ALSV; Prado CJD; Bicalho AA; Pereira RADS; Neves FDD; Soares CJ
    J Appl Oral Sci; 2018; 26():e20180004. PubMed ID: 30133672
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence of elastic modulus of inlay materials on stress distribution and fracture of premolars.
    Costa A; Xavier T; Noritomi P; Saavedra G; Borges A
    Oper Dent; 2014; 39(4):E160-70. PubMed ID: 24967990
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of cavity-margin-angles and bolus stiffness on the mechanical behavior of indirect resin composite class II restorations.
    Ausiello P; Ciaramella S; Garcia-Godoy F; Gloria A; Lanzotti A; Maietta S; Martorelli M
    Dent Mater; 2017 Jan; 33(1):e39-e47. PubMed ID: 27890355
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of restorative technique on the biomechanical behavior of endodontically treated maxillary premolars. Part II: strain measurement and stress distribution.
    Soares PV; Santos-Filho PC; Gomide HA; Araujo CA; Martins LR; Soares CJ
    J Prosthet Dent; 2008 Feb; 99(2):114-22. PubMed ID: 18262012
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cavity convergence angles for direct composite inlays.
    Wassell RW; Walls AW; McCabe JF
    J Dent; 1992 Oct; 20(5):294-7. PubMed ID: 1452867
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomechanical behavior of cavity design on teeth restored using ceramic inlays: An approach based on three-dimensional finite element analysis and ultrahigh-speed camera.
    Cheng CW; Chen WP; Chien YT; Teng YT; Lu PY; Huang SH; Lin PY; Chiang YC
    Acta Biomater; 2019 Apr; 89():382-390. PubMed ID: 30880237
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stress distribution in premolars restored with inlays or onlays: 3D finite element analysis.
    Yang H; Park C; Shin JH; Yun KD; Lim HP; Park SW; Chung H
    J Adv Prosthodont; 2018 Jun; 10(3):184-190. PubMed ID: 29930787
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomechanical performance of resin composite on dental tissue restoration: A finite element analysis.
    Ouldyerou A; Mehboob H; Mehboob A; Merdji A; Aminallah L; Mukdadi OM; Barsoum I; Junaedi H
    PLoS One; 2023; 18(12):e0295582. PubMed ID: 38128035
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stress distribution of bulk-fill resin composite in class II restorations.
    Ausiello P; Ciaramella S; Garcia-Godoy F; Martorelli M; Sorrentino R; Gloria A
    Am J Dent; 2017 Aug; 30(4):227-232. PubMed ID: 29178706
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of cyclic thermal stress on the fatigue life of teeth restored with gold inlay.
    Han W; Kim JH; Kwon HB; Park JK; Seo DG
    Dent Mater J; 2022 Jul; 41(4):567-572. PubMed ID: 35370259
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shape optimization of a 2-unit cantilevered posterior resin-bonded fixed dental prosthesis.
    Chen YC; Fok A
    J Prosthet Dent; 2023 Jan; 129(1):181-190. PubMed ID: 34023142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Three-dimensional finite element analysis of effect of root canal taper and post on tooth stress distribution].
    Zhang N; Feng CZ; Zhao SL; Fa YH; Cai XW
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2011 Mar; 46(3):153-6. PubMed ID: 21575436
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Three-dimensional finite element analysis of different endodontic access methods and full crown restoration in the maxillary central incisor].
    Liu ZY; Zhao L; Yang LY; Gao X
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2019 Dec; 37(6):642-647. PubMed ID: 31875444
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fatigue load of teeth restored with bonded direct composite and indirect ceramic inlays in MOD class II cavity preparations.
    Shor A; Nicholls JI; Phillips KM; Libman WJ
    Int J Prosthodont; 2003; 16(1):64-9. PubMed ID: 12675458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.