BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 25938207)

  • 1. Optical detection of middle ear infection using spectroscopic techniques: phantom experiments.
    Zhang H; Huang J; Li T; Svanberg S; Svanberg K
    J Biomed Opt; 2015 May; 20(5):57001. PubMed ID: 25938207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards an optical diagnostic system for otitis media using a combination of otoscopy and spectroscopy.
    Hu L; Li W; Lin H; Li Y; Zhang H; Svanberg K; Svanberg S
    J Biophotonics; 2019 Jun; 12(6):e201800305. PubMed ID: 30719866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonintrusive gas monitoring in neonatal lungs using diode laser spectroscopy: feasibility study.
    Lewander M; Bruzelius A; Svanberg S; Svanberg K; Fellman V
    J Biomed Opt; 2011 Dec; 16(12):127002. PubMed ID: 22191932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Middle ear gas composition in pathologic conditions: mass spectrometry in otitis media with effusion and atelectasis.
    Hergils L; Magnuson B
    Ann Otol Rhinol Laryngol; 1997 Sep; 106(9):743-5. PubMed ID: 9302904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Analysis of middle ear cavity gas composition by mass spectrometry].
    Okubo J; Noshiro M
    Nihon Jibiinkoka Gakkai Kaiho; 1994 Jul; 97(7):1181-90. PubMed ID: 8064503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of fiber optic probe geometry on the applicability of inverse models of tissue reflectance spectroscopy: computational models and experimental measurements.
    Sun J; Fu K; Wang A; Lin AW; Utzinger U; Drezek R
    Appl Opt; 2006 Nov; 45(31):8152-62. PubMed ID: 17068558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the sensitivity to scattering coefficient of the epithelium in a two-layered tissue model by oblique optical fibers: Monte Carlo study.
    Sung KB; Chen HH
    J Biomed Opt; 2012 Oct; 17(10):107003. PubMed ID: 23047254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agarose-based Tissue Mimicking Optical Phantoms for Diffuse Reflectance Spectroscopy.
    Mustari A; Nishidate I; Wares MA; Maeda T; Kawauchi S; Sato S; Sato M; Aizu Y
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30199019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phantom validation and in vivo application of an inversion procedure for retrieving the optical properties of diffusive layered media from time-resolved reflectance measurements.
    Martelli F; Del Bianco S; Zaccanti G; Pifferi A; Torricelli A; Bassi A; Taroni P; Cubeddu R
    Opt Lett; 2004 Sep; 29(17):2037-9. PubMed ID: 15455772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm.
    Nachabé R; Hendriks BH; Desjardins AE; van der Voort M; van der Mark MB; Sterenborg HJ
    J Biomed Opt; 2010; 15(3):037015. PubMed ID: 20615044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy.
    Doornbos RM; Lang R; Aalders MC; Cross FW; Sterenborg HJ
    Phys Med Biol; 1999 Apr; 44(4):967-81. PubMed ID: 10232809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between the gas composition of the middle ear and the venous blood at steady state.
    Luntz M; Levi D; Sadé J; Herman M
    Laryngoscope; 1995 May; 105(5 Pt 1):510-2. PubMed ID: 7760668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanically switchable solid inhomogeneous phantom for performance tests in diffuse imaging and spectroscopy.
    Pifferi A; Torricelli A; Cubeddu R; Quarto G; Re R; Sekar SK; Spinelli L; Farina A; Martelli F; Wabnitz H
    J Biomed Opt; 2015 Dec; 20(12):121304. PubMed ID: 26220211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic method for determination of the absorption coefficient in brain tissue.
    Johansson JD
    J Biomed Opt; 2010; 15(5):057005. PubMed ID: 21054121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of hemoglobin extinction spectra on optical spectroscopic measurements of blood oxygen saturation.
    Amelink A; Christiaanse T; Sterenborg HJ
    Opt Lett; 2009 May; 34(10):1525-7. PubMed ID: 19448809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemoglobin oxygen saturations in phantoms and in vivo from measurements of steady-state diffuse reflectance at a single, short source-detector separation.
    Finlay JC; Foster TH
    Med Phys; 2004 Jul; 31(7):1949-59. PubMed ID: 15305445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen measurement by multimode diode lasers employing gas correlation spectroscopy.
    Lou X; Somesfalean G; Chen B; Zhang Z
    Appl Opt; 2009 Feb; 48(5):990-7. PubMed ID: 19209216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic measurement of gas composition in the middle ear. II: Steady state values.
    Sadé J; Luntz M
    Acta Otolaryngol; 1993 May; 113(3):353-7. PubMed ID: 8517140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myocardial tissue oxygenation estimated with calibrated diffuse reflectance spectroscopy during coronary artery bypass grafting.
    Häggblad E; Lindbergh T; Karlsson MG; Casimir-Ahn H; Salerud EG; Strömberg T
    J Biomed Opt; 2008; 13(5):054030. PubMed ID: 19021410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate extraction of optical properties and top layer thickness of two-layered mucosal tissue phantoms from spatially resolved reflectance spectra.
    Sung KB; Shih KW; Hsu FW; Hsieh HP; Chuang MJ; Hsiao YH; Su YH; Tien GH
    J Biomed Opt; 2014; 19(7):77002. PubMed ID: 25027003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.