These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 25938258)

  • 1. Life cycle assessment of cellulose nanofibrils production by mechanical treatment and two different pretreatment processes.
    Arvidsson R; Nguyen D; Svanström M
    Environ Sci Technol; 2015 Jun; 49(11):6881-90. PubMed ID: 25938258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards an eco-friendly deconstruction of agro-industrial biomass and preparation of renewable cellulose nanomaterials: A review.
    Teo HL; Wahab RA
    Int J Biol Macromol; 2020 Oct; 161():1414-1430. PubMed ID: 32791266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic pretreatment for the improvement of dispersion and film properties of cellulose nanofibrils.
    Nie S; Zhang K; Lin X; Zhang C; Yan D; Liang H; Wang S
    Carbohydr Polym; 2018 Feb; 181():1136-1142. PubMed ID: 29253942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inflammatory responses and tissue reactions to wood-Based nanocellulose scaffolds.
    Rashad A; Suliman S; Mustafa M; Pedersen TØ; Campodoni E; Sandri M; Syverud K; Mustafa K
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():208-221. PubMed ID: 30678905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harmonized Life-Cycle Inventories of Nanocellulose and Its Application in Composites.
    Kane S; Miller SA; Kurtis KE; Youngblood JP; Landis EN; Weiss WJ
    Environ Sci Technol; 2023 Dec; 57(48):19137-19147. PubMed ID: 37967377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.
    Liu C; Li B; Du H; Lv D; Zhang Y; Yu G; Mu X; Peng H
    Carbohydr Polym; 2016 Oct; 151():716-724. PubMed ID: 27474618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advancement in isolation, processing, characterization and applications of emerging nanocellulose: A review.
    Noremylia MB; Hassan MZ; Ismail Z
    Int J Biol Macromol; 2022 May; 206():954-976. PubMed ID: 35304199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanofiber polymer composites: evaluation of life cycle energy use.
    Khanna V; Bakshi BR
    Environ Sci Technol; 2009 Mar; 43(6):2078-84. PubMed ID: 19368217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered nanocellulose-based hydrogels for smart drug delivery applications.
    Liu S; Qamar SA; Qamar M; Basharat K; Bilal M
    Int J Biol Macromol; 2021 Jun; 181():275-290. PubMed ID: 33781811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recycling of isopropanol for cost-effective, environmentally friendly production of carboxymethylated cellulose nanofibrils.
    Im W; Oh K; Rajabi Abhari A; Youn HJ; Lee HL
    Carbohydr Polym; 2019 Mar; 208():365-371. PubMed ID: 30658812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications.
    H P S AK; Saurabh CK; A S A; Nurul Fazita MR; Syakir MI; Davoudpour Y; Rafatullah M; Abdullah CK; M Haafiz MK; Dungani R
    Carbohydr Polym; 2016 Oct; 150():216-26. PubMed ID: 27312632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustainability of cellulose micro-/nanofibers: A comparative life cycle assessment of pathway technologies.
    Arfelis S; Aguado RJ; Civancik D; Fullana-I-Palmer P; Pèlach MÀ; Tarrés Q; Delgado-Aguilar M
    Sci Total Environ; 2023 May; 874():162482. PubMed ID: 36858230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature stability of nanocellulose dispersions.
    Heggset EB; Chinga-Carrasco G; Syverud K
    Carbohydr Polym; 2017 Feb; 157():114-121. PubMed ID: 27987816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the Dispersion and Assembly of Bacterial Cellulose in Organic Solvents.
    Ferguson A; Khan U; Walsh M; Lee KY; Bismarck A; Shaffer MS; Coleman JN; Bergin SD
    Biomacromolecules; 2016 May; 17(5):1845-53. PubMed ID: 27007744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications.
    Xue Y; Mou Z; Xiao H
    Nanoscale; 2017 Oct; 9(39):14758-14781. PubMed ID: 28967940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of retention rate of fluorescent cellulose nanofibrils on paper properties and structure.
    Ding Q; Zeng J; Wang B; Gao W; Chen K; Yuan Z; Xu J; Tang D
    Carbohydr Polym; 2018 Apr; 186():73-81. PubMed ID: 29456011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Processing nanocellulose foam into high-performance membranes for harvesting energy from nature.
    Zhang F; Li Y; Cai H; Liu Q; Tong G
    Carbohydr Polym; 2020 Aug; 241():116253. PubMed ID: 32507217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy-Efficient Routes for the Production of Gasoline from Biogas and Pyrolysis Oil-Process Design and Life-Cycle Assessment.
    Sundaram S; Kolb G; Hessel V; Wang Q
    Ind Eng Chem Res; 2017 Mar; 56(12):3373-3387. PubMed ID: 28405056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanocellulose Production: Exploring the Enzymatic Route and Residues of Pulp and Paper Industry.
    Michelin M; Gomes DG; Romaní A; Polizeli MLTM; Teixeira JA
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32731405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanocellulose and its Composites for Biomedical Applications.
    Dumanli AG
    Curr Med Chem; 2017; 24(5):512-528. PubMed ID: 27758719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.