These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

507 related articles for article (PubMed ID: 25938277)

  • 1. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes.
    Li J; Zou C; Xu J; Ji X; Niu X; Yang J; Huang X; Zhang KQ
    Annu Rev Phytopathol; 2015; 53():67-95. PubMed ID: 25938277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal pathways involved in microbe-nematode interactions provide new insights into the biocontrol of plant-parasitic nematodes.
    Liang LM; Zou CG; Xu J; Zhang KQ
    Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1767):20180317. PubMed ID: 30967028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological control: a novel strategy for the control of the plant parasitic nematodes.
    Ahmad G; Khan A; Khan AA; Ali A; Mohhamad HI
    Antonie Van Leeuwenhoek; 2021 Jul; 114(7):885-912. PubMed ID: 33893903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects.
    Tian B; Yang J; Zhang KQ
    FEMS Microbiol Ecol; 2007 Aug; 61(2):197-213. PubMed ID: 17651135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trapping devices of nematode-trapping fungi: formation, evolution, and genomic perspectives.
    Su H; Zhao Y; Zhou J; Feng H; Jiang D; Zhang KQ; Yang J
    Biol Rev Camb Philos Soc; 2017 Feb; 92(1):357-368. PubMed ID: 26526919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular enzymes and the pathogenesis of nematophagous fungi.
    Yang J; Tian B; Liang L; Zhang KQ
    Appl Microbiol Biotechnol; 2007 May; 75(1):21-31. PubMed ID: 17318531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new strain of Volutella citrinella with nematode predation and nematicidal activity, isolated from the cysts of potato cyst nematodes in China.
    Zhang X; Zhang H; Jiang Z; Bai Q; Wu S; Wang Y; Li C; Zeng X; Gan X; Xie X; Li Z; Yang Z
    BMC Microbiol; 2021 Nov; 21(1):323. PubMed ID: 34809566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-vitro predatory activity of nematophagous fungi from Costa Rica with potential use for controlling sheep and goat parasitic nematodes.
    Soto-Barrientos N; de Oliveira J; Vega-Obando R; Montero-Caballero D; Vargas B; Hernández-Gamboa J; Orozco-Solano C
    Rev Biol Trop; 2011 Mar; 59(1):37-52. PubMed ID: 21513192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. United States Department of Agriculture-Agricultural Research Service research programs on microbes for management of plant-parasitic nematodes.
    Meyer SL
    Pest Manag Sci; 2003; 59(6-7):665-70. PubMed ID: 12846316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhizosphere Interactions and the Exploitation of Microbial Agents for the Biological Control of Plant-Parasitic Nematodes.
    Kerry BR
    Annu Rev Phytopathol; 2000 Sep; 38():423-441. PubMed ID: 11701849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entomopathogenic and plant pathogenic nematodes as opposing forces in agriculture.
    Kenney E; Eleftherianos I
    Int J Parasitol; 2016 Jan; 46(1):13-9. PubMed ID: 26527129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cuticle surface coat of plant-parasitic nematodes.
    Davies KG; Curtis RH
    Annu Rev Phytopathol; 2011; 49():135-56. PubMed ID: 21568702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nematophagous fungi for biological control of gastrointestinal nematodes in domestic animals.
    Braga FR; de Araújo JV
    Appl Microbiol Biotechnol; 2014 Jan; 98(1):71-82. PubMed ID: 24265027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in the biological control of phytoparasitic nematodes via the use of nematophagous fungi.
    Flores Francisco BG; Ponce IM; Plascencia Espinosa MÁ; Mendieta Moctezuma A; López Y López VE
    World J Microbiol Biotechnol; 2021 Sep; 37(10):180. PubMed ID: 34562178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nematophagous fungi: strategies for nematode exploitation and for survival.
    Nordbring-Hertz B
    Microbiol Sci; 1988 Apr; 5(4):108-16. PubMed ID: 3079225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part I: metabolites from nematophagous ascomycetes.
    Degenkolb T; Vilcinskas A
    Appl Microbiol Biotechnol; 2016 May; 100(9):3799-812. PubMed ID: 26715220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of soy protein polymers as a release device for nematophagous fungi in the control of parasitic nematodes in ruminants.
    Sagüés MF; Purslow P; Fernández AS; Iglesias LE; Fusé LA; Saumell CA
    J Helminthol; 2014 Dec; 88(4):511-4. PubMed ID: 23750613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the nematophagous fungus, Duddingtonia flagrans, on the larval development of goat parasitic nematodes: a plot study.
    Chartier C; Pors I
    Vet Res; 2003; 34(2):221-30. PubMed ID: 12657214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nematophagous fungi from decomposing cattle faeces in Argentina.
    Saumell CA; Fernández AS; Fusé LA; Rodríguez M; Sagüés MF; Iglesias LE
    Rev Iberoam Micol; 2015; 32(4):252-6. PubMed ID: 25766793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracellular enzymes serving as virulence factors in nematophagous fungi involved in infection of the host.
    Huang X; Zhao N; Zhang K
    Res Microbiol; 2004 Dec; 155(10):811-6. PubMed ID: 15567274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.