These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25938409)

  • 21. Extending a combined dynamic energy budget matrix population model with a bayesian approach to assess variation in the intrinsic rate of population increase. An example in the earthworm Dendrobaena octaedra.
    Klok C; Holmstrup M; Damgaard C
    Environ Toxicol Chem; 2007 Nov; 26(11):2383-8. PubMed ID: 17941747
    [TBL] [Abstract][Full Text] [Related]  

  • 22. What is the status of metabolic theory one century after Pütter invented the von Bertalanffy growth curve?
    Kearney MR
    Biol Rev Camb Philos Soc; 2021 Apr; 96(2):557-575. PubMed ID: 33205617
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Population-level effects in Amphiascus tenuiremis: contrasting matrix- and individual-based population models.
    Lundström Belleza E; Brinkmann M; Preuss TG; Breitholtz M
    Aquat Toxicol; 2014 Dec; 157():207-14. PubMed ID: 25456235
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A review of DEB theory in assessing toxic effects of mixtures.
    Baas J; Jager T; Kooijman B
    Sci Total Environ; 2010 Aug; 408(18):3740-5. PubMed ID: 19850324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrating dynamic energy budget (DEB) theory with traditional bioenergetic models.
    Nisbet RM; Jusup M; Klanjscek T; Pecquerie L
    J Exp Biol; 2012 Mar; 215(Pt 6):892-902. PubMed ID: 22357583
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extrapolating toxic effects on individuals to the population level: the role of dynamic energy budgets.
    Jager T; Klok C
    Philos Trans R Soc Lond B Biol Sci; 2010 Nov; 365(1557):3531-40. PubMed ID: 20921051
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Developmental energetics of zebrafish, Danio rerio.
    Augustine S; Gagnaire B; Floriani M; Adam-Guillermin C; Kooijman SA
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Jul; 159(3):275-83. PubMed ID: 21440658
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modelling the effects of variability in feeding rate on growth - a vital step for DEB-TKTD modelling.
    Martin T; Hodson ME; Ashauer R
    Ecotoxicol Environ Saf; 2022 Mar; 232():113231. PubMed ID: 35104776
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How to lift a model for individual behaviour to the population level?
    Diekmann O; Metz JA
    Philos Trans R Soc Lond B Biol Sci; 2010 Nov; 365(1557):3523-30. PubMed ID: 20921050
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An energy budget agent-based model of earthworm populations and its application to study the effects of pesticides.
    Johnston AS; Hodson ME; Thorbek P; Alvarez T; Sibly RM
    Ecol Modell; 2014 May; 280():5-17. PubMed ID: 25844009
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A dynamic energy budget (DEB) model for the energy usage and reproduction of the Icelandic capelin (Mallotus villosus).
    Einarsson B; Birnir B; Sigurðsson S
    J Theor Biol; 2011 Jul; 281(1):1-8. PubMed ID: 21458465
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A dynamic energy-based model to analyze sublethal effects of chronic gamma irradiation in the nematode Caenorhabditis elegans.
    Lecomte-Pradines C; Hertel-Aas T; Coutris C; Gilbin R; Oughton D; Alonzo F
    J Toxicol Environ Health A; 2017; 80(16-18):830-844. PubMed ID: 28837407
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Is structural sensitivity a problem of oversimplified biological models? Insights from nested Dynamic Energy Budget models.
    Aldebert C; Kooi BW; Nerini D; Poggiale JC
    J Theor Biol; 2018 Jul; 448():1-8. PubMed ID: 29550453
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How resource competition shapes individual life history for nonplastic growth: ungulates in seasonal food environments.
    De Roos AM; Galic N; Heesterbeek H
    Ecology; 2009 Apr; 90(4):945-60. PubMed ID: 19449690
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling physiological processes that relate toxicant exposure and bacterial population dynamics.
    Klanjscek T; Nisbet RM; Priester JH; Holden PA
    PLoS One; 2012; 7(2):e26955. PubMed ID: 22328915
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reconciling theories for metabolic scaling.
    Maino JL; Kearney MR; Nisbet RM; Kooijman SA
    J Anim Ecol; 2014 Jan; 83(1):20-9. PubMed ID: 23668377
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calibration of parameters in Dynamic Energy Budget models using Direct-Search methods.
    Morais JV; Custódio AL; Marques GM
    J Math Biol; 2019 Apr; 78(5):1439-1458. PubMed ID: 30523383
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermodynamics of organisms in the context of dynamic energy budget theory.
    Sousa T; Mota R; Domingos T; Kooijman SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051901. PubMed ID: 17279933
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DEBkiss or the quest for the simplest generic model of animal life history.
    Jager T; Martin BT; Zimmer EI
    J Theor Biol; 2013 Jul; 328():9-18. PubMed ID: 23523873
    [TBL] [Abstract][Full Text] [Related]  

  • 40. From organisms to populations: modeling aquatic toxicity data across two levels of biological organization.
    Raimondo S; McKenney CL
    Environ Toxicol Chem; 2006 Feb; 25(2):589-96. PubMed ID: 16519323
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.