These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 25938464)

  • 1. Quantitative detection of pharmaceuticals using a combination of paper microfluidics and wavelength modulated Raman spectroscopy.
    Craig D; Mazilu M; Dholakia K
    PLoS One; 2015; 10(5):e0123334. PubMed ID: 25938464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimisation of wavelength modulated Raman spectroscopy: towards high throughput cell screening.
    Praveen BB; Mazilu M; Marchington RF; Herrington CS; Riches A; Dholakia K
    PLoS One; 2013; 8(6):e67211. PubMed ID: 23825643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time monitoring of live mycobacteria with a microfluidic acoustic-Raman platform.
    Baron VO; Chen M; Hammarstrom B; Hammond RJH; Glynne-Jones P; Gillespie SH; Dholakia K
    Commun Biol; 2020 May; 3(1):236. PubMed ID: 32409770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research Progress of Raman Spectroscopy in Drug Analysis.
    Wang WT; Zhang H; Yuan Y; Guo Y; He SX
    AAPS PharmSciTech; 2018 Oct; 19(7):2921-2928. PubMed ID: 30091063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fiber probe based microfluidic raman spectroscopy.
    Ashok PC; Singh GP; Tan KM; Dholakia K
    Opt Express; 2010 Apr; 18(8):7642-9. PubMed ID: 20588604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of cardiovascular disease associated miR-29a using paper-based microfluidics and surface enhanced Raman scattering.
    Mabbott S; Fernandes SC; Schechinger M; Cote GL; Faulds K; Mace CR; Graham D
    Analyst; 2020 Feb; 145(3):983-991. PubMed ID: 31829323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-invasive quantitative assessment of the content of pharmaceutical capsules using transmission Raman spectroscopy.
    Eliasson C; Macleod NA; Jayes LC; Clarke FC; Hammond SV; Smith MR; Matousek P
    J Pharm Biomed Anal; 2008 Jun; 47(2):221-9. PubMed ID: 18296001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence suppression using wavelength modulated Raman spectroscopy in fiber-probe-based tissue analysis.
    Praveen BB; Ashok PC; Mazilu M; Riches A; Herrington S; Dholakia K
    J Biomed Opt; 2012 Jul; 17(7):077006. PubMed ID: 22894519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Online fluorescence suppression in modulated Raman spectroscopy.
    De Luca AC; Mazilu M; Riches A; Herrington CS; Dholakia K
    Anal Chem; 2010 Jan; 82(2):738-45. PubMed ID: 20017474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-Enhanced Raman Spectroscopic Probing in Digital Microfluidics through a Microspray Hole.
    Das A; Fehse S; Polack M; Panneerselvam R; Belder D
    Anal Chem; 2023 Jan; 95(2):1262-1272. PubMed ID: 36577121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of pharmaceuticals via transmission Raman spectroscopy: data sub-selection.
    Burley JC; Aina A; Matousek P; Brignell C
    Analyst; 2014 Jan; 139(1):74-8. PubMed ID: 24223421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative online detection of low-concentrated drugs via a SERS microfluidic system.
    Ackermann KR; Henkel T; Popp J
    Chemphyschem; 2007 Dec; 8(18):2665-70. PubMed ID: 18061914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid detection of drugs of abuse in saliva using surface enhanced Raman spectroscopy and microfluidics.
    Andreou C; Hoonejani MR; Barmi MR; Moskovits M; Meinhart CD
    ACS Nano; 2013 Aug; 7(8):7157-64. PubMed ID: 23859441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noninvasive authentication of pharmaceutical products through packaging using spatially offset Raman spectroscopy.
    Eliasson C; Matousek P
    Anal Chem; 2007 Feb; 79(4):1696-701. PubMed ID: 17297975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasensitive fiber enhanced UV resonance Raman sensing of drugs.
    Frosch T; Yan D; Popp J
    Anal Chem; 2013 Jul; 85(13):6264-71. PubMed ID: 23758275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of low active-pharmaceutical-ingredient signal drugs based on thin layer chromatography and surface-enhanced Raman spectroscopy.
    Li X; Chen H; Zhu Q; Liu Y; Lu F
    J Pharm Biomed Anal; 2016 Nov; 131():410-419. PubMed ID: 27649509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidics and surface-enhanced Raman spectroscopy, a win-win combination?
    Panneerselvam R; Sadat H; Höhn EM; Das A; Noothalapati H; Belder D
    Lab Chip; 2022 Feb; 22(4):665-682. PubMed ID: 35107464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anatomy of noise in quantitative biological Raman spectroscopy.
    Smulko JM; Dingari NC; Soares JS; Barman I
    Bioanalysis; 2014 Feb; 6(3):411-21. PubMed ID: 24471960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanopillar Filters for Surface-Enhanced Raman Spectroscopy.
    Durucan O; Rindzevicius T; Schmidt MS; Matteucci M; Boisen A
    ACS Sens; 2017 Oct; 2(10):1400-1404. PubMed ID: 28956441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paper-based microfluidic approach for surface-enhanced raman spectroscopy and highly reproducible detection of proteins beyond picomolar concentration.
    Saha A; Jana NR
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):996-1003. PubMed ID: 25521159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.