BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 25938686)

  • 1. Physiological functions of vitamin D: what we have learned from global and conditional VDR knockout mouse studies.
    Suda T; Masuyama R; Bouillon R; Carmeliet G
    Curr Opin Pharmacol; 2015 Jun; 22():87-99. PubMed ID: 25938686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The delicate balance between vitamin D, calcium and bone homeostasis: lessons learned from intestinal- and osteocyte-specific VDR null mice.
    Lieben L; Carmeliet G
    J Steroid Biochem Mol Biol; 2013 Jul; 136():102-6. PubMed ID: 23022574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intestinal Regulation of Calcium: Vitamin D and Bone Physiology.
    Christakos S; Veldurthy V; Patel N; Wei R
    Adv Exp Med Biol; 2017; 1033():3-12. PubMed ID: 29101648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Bone and Nutrition. Vitamin D independent calcium absorption].
    Masuyama R
    Clin Calcium; 2015 Jul; 25(7):1023-8. PubMed ID: 26119315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Rickets/Osteomalacia. Vitamin D action:Lessons from animal models.].
    Masuyama R
    Clin Calcium; 2018; 28(10):1365-1371. PubMed ID: 30269119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D-induced inhibition of bone mineralization.
    Lieben L; Masuyama R; Torrekens S; Van Looveren R; Schrooten J; Baatsen P; Lafage-Proust MH; Dresselaers T; Feng JQ; Bonewald LF; Meyer MB; Pike JW; Bouillon R; Carmeliet G
    J Clin Invest; 2012 May; 122(5):1803-15. PubMed ID: 22523068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical role of vitamin D in sulfate homeostasis: regulation of the sodium-sulfate cotransporter by 1,25-dihydroxyvitamin D3.
    Bolt MJ; Liu W; Qiao G; Kong J; Zheng W; Krausz T; Cs-Szabo G; Sitrin MD; Li YC
    Am J Physiol Endocrinol Metab; 2004 Oct; 287(4):E744-9. PubMed ID: 15165995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Biological action mechanisms and effects of calcitriol].
    Kveiborg M; Mosekilde L; Eriksen EF; Kassem MS
    Ugeskr Laeger; 1999 Oct; 161(41):5669-74. PubMed ID: 10565236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vitamin D receptor in osteoblasts is a negative regulator of bone mass control.
    Yamamoto Y; Yoshizawa T; Fukuda T; Shirode-Fukuda Y; Yu T; Sekine K; Sato T; Kawano H; Aihara K; Nakamichi Y; Watanabe T; Shindo M; Inoue K; Inoue E; Tsuji N; Hoshino M; Karsenty G; Metzger D; Chambon P; Kato S; Imai Y
    Endocrinology; 2013 Mar; 154(3):1008-20. PubMed ID: 23389957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective biological response by target organs (intestine, kidney, and bone) to 1,25-dihydroxyvitamin D3 and two analogues.
    Norman AW; Sergeev IN; Bishop JE; Okamura WH
    Cancer Res; 1993 Sep; 53(17):3935-42. PubMed ID: 8395333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The vitamin D hormone and its nuclear receptor: molecular actions and disease states.
    Haussler MR; Haussler CA; Jurutka PW; Thompson PD; Hsieh JC; Remus LS; Selznick SH; Whitfield GK
    J Endocrinol; 1997 Sep; 154 Suppl():S57-73. PubMed ID: 9379138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vitamin D-dependent calcium transport.
    DeLuca HF
    Soc Gen Physiol Ser; 1985; 39():159-76. PubMed ID: 2984778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intestinal calcium transporter genes are upregulated by estrogens and the reproductive cycle through vitamin D receptor-independent mechanisms.
    Van Cromphaut SJ; Rummens K; Stockmans I; Van Herck E; Dijcks FA; Ederveen AG; Carmeliet P; Verhaeghe J; Bouillon R; Carmeliet G
    J Bone Miner Res; 2003 Oct; 18(10):1725-36. PubMed ID: 14584880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered gene expression profile in the kidney of vitamin D receptor knockout mice.
    Li X; Zheng W; Li YC
    J Cell Biochem; 2003 Jul; 89(4):709-19. PubMed ID: 12858337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Exogenous estrogen improved calcium homeostasis and skeletal mineralization in vitamin D receptor gene knockout female mice].
    Li BY; Tong J; Zhang ZL
    Sheng Li Xue Bao; 2006 Dec; 58(6):573-6. PubMed ID: 17173192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vitamin D signaling in osteocytes: effects on bone and mineral homeostasis.
    Lieben L; Carmeliet G
    Bone; 2013 Jun; 54(2):237-43. PubMed ID: 23072922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct action of 1,25-dihydroxyvitamin D on bone: VDRKO bone shows excessive bone formation in normal mineral condition.
    Tanaka H; Seino Y
    J Steroid Biochem Mol Biol; 2004 May; 89-90(1-5):343-5. PubMed ID: 15225798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vitamin D receptor ligands for osteoporosis.
    Cheskis BJ; Freedman LP; Nagpal S
    Curr Opin Investig Drugs; 2006 Oct; 7(10):906-11. PubMed ID: 17086935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pregnancy in mice lacking the vitamin D receptor: normal maternal skeletal response, but fetal hypomineralization rescued by maternal calcium supplementation.
    Rummens K; van Cromphaut SJ; Carmeliet G; van Herck E; van Bree R; Stockmans I; Bouillon R; Verhaeghe J
    Pediatr Res; 2003 Oct; 54(4):466-73. PubMed ID: 12815117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dietary calcium and phosphorus ratio regulates bone mineralization and turnover in vitamin D receptor knockout mice by affecting intestinal calcium and phosphorus absorption.
    Masuyama R; Nakaya Y; Katsumata S; Kajita Y; Uehara M; Tanaka S; Sakai A; Kato S; Nakamura T; Suzuki K
    J Bone Miner Res; 2003 Jul; 18(7):1217-26. PubMed ID: 12854831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.