These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 25938783)

  • 1. Prevention of PKG1α oxidation augments cardioprotection in the stressed heart.
    Nakamura T; Ranek MJ; Lee DI; Shalkey Hahn V; Kim C; Eaton P; Kass DA
    J Clin Invest; 2015 Jun; 125(6):2468-72. PubMed ID: 25938783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prevention of PKG-1α Oxidation Suppresses Antihypertrophic/Antifibrotic Effects From PDE5 Inhibition but not sGC Stimulation.
    Nakamura T; Zhu G; Ranek MJ; Kokkonen-Simon K; Zhang M; Kim GE; Tsujita K; Kass DA
    Circ Heart Fail; 2018 Mar; 11(3):e004740. PubMed ID: 29545395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PKG1α Cysteine-42 Redox State Controls mTORC1 Activation in Pathological Cardiac Hypertrophy.
    Oeing CU; Nakamura T; Pan S; Mishra S; Dunkerly-Eyring BL; Kokkonen-Simon KM; Lin BL; Chen A; Zhu G; Bedja D; Lee DI; Kass DA; Ranek MJ
    Circ Res; 2020 Jul; 127(4):522-533. PubMed ID: 32393148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-lasting blood pressure lowering effects of nitrite are NO-independent and mediated by hydrogen peroxide, persulfides, and oxidation of protein kinase G1α redox signalling.
    Feelisch M; Akaike T; Griffiths K; Ida T; Prysyazhna O; Goodwin JJ; Gollop ND; Fernandez BO; Minnion M; Cortese-Krott MM; Borgognone A; Hayes RM; Eaton P; Frenneaux MP; Madhani M
    Cardiovasc Res; 2020 Jan; 116(1):51-62. PubMed ID: 31372656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PKG1α oxidation negatively regulates food seeking behaviour and reward.
    Duraffourd C; Huckstepp RTR; Braren I; Fernandes C; Brock O; Delogu A; Prysyazhna O; Burgoyne J; Eaton P
    Redox Biol; 2019 Feb; 21():101077. PubMed ID: 30593979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translocation of PKG1α acts on TRPV4-C1 heteromeric channels to inhibit endothelial Ca(2+) entry.
    Zhang P; Mao AQ; Sun CY; Zhang XD; Pan QX; Yang DT; Jin J; Tang CL; Yang ZY; Yao XQ; Lu XJ; Ma X
    Acta Pharmacol Sin; 2016 Sep; 37(9):1199-207. PubMed ID: 27397542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation of TRPC6 channels at Thr69 is required for anti-hypertrophic effects of phosphodiesterase 5 inhibition.
    Nishida M; Watanabe K; Sato Y; Nakaya M; Kitajima N; Ide T; Inoue R; Kurose H
    J Biol Chem; 2010 Apr; 285(17):13244-53. PubMed ID: 20177073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles for cytosolic NADPH redox in regulating pulmonary artery relaxation by thiol oxidation-elicited subunit dimerization of protein kinase G1α.
    Neo BH; Patel D; Kandhi S; Wolin MS
    Am J Physiol Heart Circ Physiol; 2013 Aug; 305(3):H330-43. PubMed ID: 23709600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MLK3 mediates impact of PKG1α on cardiac function and controls blood pressure through separate mechanisms.
    Calamaras TD; Pande S; Baumgartner RA; Kim SK; McCarthy JC; Martin GL; Tam K; McLaughlin AL; Wang GR; Aronovitz MJ; Lin W; Aguirre JI; Baca P; Liu P; Richards DA; Davis RJ; Karas RH; Jaffe IZ; Blanton RM
    JCI Insight; 2021 Sep; 6(18):. PubMed ID: 34324442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of TRPC6 channel activity contributes to the antihypertrophic effects of natriuretic peptides-guanylyl cyclase-A signaling in the heart.
    Kinoshita H; Kuwahara K; Nishida M; Jian Z; Rong X; Kiyonaka S; Kuwabara Y; Kurose H; Inoue R; Mori Y; Li Y; Nakagawa Y; Usami S; Fujiwara M; Yamada Y; Minami T; Ueshima K; Nakao K
    Circ Res; 2010 Jun; 106(12):1849-60. PubMed ID: 20448219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel insights into the mechanisms mediating the local antihypertrophic effects of cardiac atrial natriuretic peptide: role of cGMP-dependent protein kinase and RGS2.
    Klaiber M; Kruse M; Völker K; Schröter J; Feil R; Freichel M; Gerling A; Feil S; Dietrich A; Londoño JE; Baba HA; Abramowitz J; Birnbaumer L; Penninger JM; Pongs O; Kuhn M
    Basic Res Cardiol; 2010 Sep; 105(5):583-95. PubMed ID: 20352235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood Pressure-Lowering by the Antioxidant Resveratrol Is Counterintuitively Mediated by Oxidation of cGMP-Dependent Protein Kinase.
    Prysyazhna O; Wolhuter K; Switzer C; Santos C; Yang X; Lynham S; Shah AM; Eaton P; Burgoyne JR
    Circulation; 2019 Jul; 140(2):126-137. PubMed ID: 31116951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atrial natriuretic peptide-mediated inhibition of microcirculatory endothelial Ca2+ and permeability response to histamine involves cGMP-dependent protein kinase I and TRPC6 channels.
    Chen W; Oberwinkler H; Werner F; Gaßner B; Nakagawa H; Feil R; Hofmann F; Schlossmann J; Dietrich A; Gudermann T; Nishida M; Del Galdo S; Wieland T; Kuhn M
    Arterioscler Thromb Vasc Biol; 2013 Sep; 33(9):2121-9. PubMed ID: 23814119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitroglycerin fails to lower blood pressure in redox-dead Cys42Ser PKG1α knock-in mouse.
    Rudyk O; Prysyazhna O; Burgoyne JR; Eaton P
    Circulation; 2012 Jul; 126(3):287-95. PubMed ID: 22685118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphodiesterase 5 Inhibition Limits Doxorubicin-induced Heart Failure by Attenuating Protein Kinase G Iα Oxidation.
    Prysyazhna O; Burgoyne JR; Scotcher J; Grover S; Kass D; Eaton P
    J Biol Chem; 2016 Aug; 291(33):17427-36. PubMed ID: 27342776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperactive adverse mechanical stress responses in dystrophic heart are coupled to transient receptor potential canonical 6 and blocked by cGMP-protein kinase G modulation.
    Seo K; Rainer PP; Lee DI; Hao S; Bedja D; Birnbaumer L; Cingolani OH; Kass DA
    Circ Res; 2014 Feb; 114(5):823-32. PubMed ID: 24449818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein kinase G1 α overexpression increases stem cell survival and cardiac function after myocardial infarction.
    Wang L; Pasha Z; Wang S; Li N; Feng Y; Lu G; Millard RW; Ashraf M
    PLoS One; 2013; 8(3):e60087. PubMed ID: 23536905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TRPC channels are necessary mediators of pathologic cardiac hypertrophy.
    Wu X; Eder P; Chang B; Molkentin JD
    Proc Natl Acad Sci U S A; 2010 Apr; 107(15):7000-5. PubMed ID: 20351294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathological cardiac hypertrophy alters intracellular targeting of phosphodiesterase type 5 from nitric oxide synthase-3 to natriuretic peptide signaling.
    Zhang M; Takimoto E; Lee DI; Santos CX; Nakamura T; Hsu S; Jiang A; Nagayama T; Bedja D; Yuan Y; Eaton P; Shah AM; Kass DA
    Circulation; 2012 Aug; 126(8):942-51. PubMed ID: 22829024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulator of G protein signaling 2 mediates cardiac compensation to pressure overload and antihypertrophic effects of PDE5 inhibition in mice.
    Takimoto E; Koitabashi N; Hsu S; Ketner EA; Zhang M; Nagayama T; Bedja D; Gabrielson KL; Blanton R; Siderovski DP; Mendelsohn ME; Kass DA
    J Clin Invest; 2009 Feb; 119(2):408-20. PubMed ID: 19127022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.