These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
531 related articles for article (PubMed ID: 25938858)
1. Electron injection dynamics in high-potential porphyrin photoanodes. Milot RL; Schmuttenmaer CA Acc Chem Res; 2015 May; 48(5):1423-31. PubMed ID: 25938858 [TBL] [Abstract][Full Text] [Related]
2. Solar fuels via artificial photosynthesis. Gust D; Moore TA; Moore AL Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921 [TBL] [Abstract][Full Text] [Related]
3. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis. Hammarström L Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365 [TBL] [Abstract][Full Text] [Related]
4. Biomimetic and microbial approaches to solar fuel generation. Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805 [TBL] [Abstract][Full Text] [Related]
5. "Spider"-shaped porphyrins with conjugated pyridyl anchoring groups as efficient sensitizers for dye-sensitized solar cells. Stangel C; Bagaki A; Angaridis PA; Charalambidis G; Sharma GD; Coutsolelos AG Inorg Chem; 2014 Nov; 53(22):11871-81. PubMed ID: 25365138 [TBL] [Abstract][Full Text] [Related]
6. Recent advances in sensitized mesoscopic solar cells. Grätzel M Acc Chem Res; 2009 Nov; 42(11):1788-98. PubMed ID: 19715294 [TBL] [Abstract][Full Text] [Related]
7. Fe(II)-Polypyridines as Chromophores in Dye-Sensitized Solar Cells: A Computational Perspective. Jakubikova E; Bowman DN Acc Chem Res; 2015 May; 48(5):1441-9. PubMed ID: 25919490 [TBL] [Abstract][Full Text] [Related]
8. Visible light water splitting using dye-sensitized oxide semiconductors. Youngblood WJ; Lee SH; Maeda K; Mallouk TE Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000 [TBL] [Abstract][Full Text] [Related]
9. Interfacial dynamics and solar fuel formation in dye-sensitized photoelectrosynthesis cells. Song W; Chen Z; Glasson CR; Hanson K; Luo H; Norris MR; Ashford DL; Concepcion JJ; Brennaman MK; Meyer TJ Chemphyschem; 2012 Aug; 13(12):2882-90. PubMed ID: 22715164 [TBL] [Abstract][Full Text] [Related]
10. Chlorophyll-a derivatives with various hydrocarbon ester groups for efficient dye-sensitized solar cells: static and ultrafast evaluations on electron injection and charge collection processes. Wang XF; Tamiaki H; Wang L; Tamai N; Kitao O; Zhou H; Sasaki S Langmuir; 2010 May; 26(9):6320-7. PubMed ID: 20380394 [TBL] [Abstract][Full Text] [Related]
11. Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation. Dau H; Zaharieva I Acc Chem Res; 2009 Dec; 42(12):1861-70. PubMed ID: 19908828 [TBL] [Abstract][Full Text] [Related]
12. Artificial photosynthesis: from nanosecond electron transfer to catalytic water oxidation. Kärkäs MD; Johnston EV; Verho O; Akermark B Acc Chem Res; 2014 Jan; 47(1):100-11. PubMed ID: 23957573 [TBL] [Abstract][Full Text] [Related]
13. New photovoltaic devices based on the sensitization of p-type semiconductors: challenges and opportunities. Odobel F; Le Pleux L; Pellegrin Y; Blart E Acc Chem Res; 2010 Aug; 43(8):1063-71. PubMed ID: 20455541 [TBL] [Abstract][Full Text] [Related]
14. Anchoring groups for dye-sensitized solar cells. Zhang L; Cole JM ACS Appl Mater Interfaces; 2015 Feb; 7(6):3427-55. PubMed ID: 25594514 [TBL] [Abstract][Full Text] [Related]
15. Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real. O'Regan BC; Durrant JR Acc Chem Res; 2009 Nov; 42(11):1799-808. PubMed ID: 19754041 [TBL] [Abstract][Full Text] [Related]
16. Metal-free organic sensitizers for use in water-splitting dye-sensitized photoelectrochemical cells. Swierk JR; Méndez-Hernández DD; McCool NS; Liddell P; Terazono Y; Pahk I; Tomlin JJ; Oster NV; Moore TA; Moore AL; Gust D; Mallouk TE Proc Natl Acad Sci U S A; 2015 Feb; 112(6):1681-6. PubMed ID: 25583488 [TBL] [Abstract][Full Text] [Related]
17. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Imahori H; Umeyama T; Ito S Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942 [TBL] [Abstract][Full Text] [Related]
18. Fluorinated Zn Orbelli Biroli A; Tessore F; Di Carlo G; Pizzotti M; Benazzi E; Gentile F; Berardi S; Bignozzi CA; Argazzi R; Natali M; Sartorel A; Caramori S ACS Appl Mater Interfaces; 2019 Sep; 11(36):32895-32908. PubMed ID: 31429275 [TBL] [Abstract][Full Text] [Related]
19. Optimization of Photoanodes for Photocatalytic Water Oxidation by Combining a Heterogenized Iridium Water-Oxidation Catalyst with a High-Potential Porphyrin Photosensitizer. Materna KL; Jiang J; Regan KP; Schmuttenmaer CA; Crabtree RH; Brudvig GW ChemSusChem; 2017 Nov; 10(22):4526-4534. PubMed ID: 28876510 [TBL] [Abstract][Full Text] [Related]