These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 25938953)

  • 1. Microsecond protein folding events revealed by time-resolved fluorescence resonance energy transfer in a microfluidic mixer.
    Jiang L; Zeng Y; Sun Q; Sun Y; Guo Z; Qu JY; Yao S
    Anal Chem; 2015 Jun; 87(11):5589-95. PubMed ID: 25938953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zinc porphyrin as a donor for FRET in Zn(II)cytochrome c.
    Lee AJ; Ensign AA; Krauss TD; Bren KL
    J Am Chem Soc; 2010 Feb; 132(6):1752-3. PubMed ID: 20102193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microsecond time-scale kinetics of transient biochemical reactions.
    Mitić S; Strampraad MJF; Hagen WR; de Vries S
    PLoS One; 2017; 12(10):e0185888. PubMed ID: 28973014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Femtomole mixer for microsecond kinetic studies of protein folding.
    Hertzog DE; Michalet X; Jäger M; Kong X; Santiago JG; Weiss S; Bakajin O
    Anal Chem; 2004 Dec; 76(24):7169-78. PubMed ID: 15595857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic mixers for the investigation of rapid protein folding kinetics using synchrotron radiation circular dichroism spectroscopy.
    Kane AS; Hoffmann A; Baumgärtel P; Seckler R; Reichardt G; Horsley DA; Schuler B; Bakajin O
    Anal Chem; 2008 Dec; 80(24):9534-41. PubMed ID: 19072266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microsecond barrier-limited chain collapse observed by time-resolved FRET and SAXS.
    Kathuria SV; Kayatekin C; Barrea R; Kondrashkina E; Graceffa R; Guo L; Nobrega RP; Chakravarthy S; Matthews CR; Irving TC; Bilsel O
    J Mol Biol; 2014 May; 426(9):1980-94. PubMed ID: 24607691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-specific collapse dynamics guide the formation of the cytochrome c' four-helix bundle.
    Kimura T; Lee JC; Gray HB; Winkler JR
    Proc Natl Acad Sci U S A; 2007 Jan; 104(1):117-22. PubMed ID: 17179212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonuniform chain collapse during early stages of staphylococcal nuclease folding detected by fluorescence resonance energy transfer and ultrarapid mixing methods.
    Mizukami T; Xu M; Cheng H; Roder H; Maki K
    Protein Sci; 2013 Oct; 22(10):1336-48. PubMed ID: 23904284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porphyrin fluorescence dominates UV photoemission of folded cytochrome c.
    Löwenich D; Kleinermanns K
    Photochem Photobiol; 2007; 83(6):1308-12. PubMed ID: 18028202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy.
    Consani C; Auböck G; van Mourik F; Chergui M
    Science; 2013 Mar; 339(6127):1586-9. PubMed ID: 23393092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An instrument for fast acquisition of fluorescence decay curves at picosecond resolution designed for "double kinetics" experiments: application to fluorescence resonance excitation energy transfer study of protein folding.
    Ishay EB; Hazan G; Rahamim G; Amir D; Haas E
    Rev Sci Instrum; 2012 Aug; 83(8):084301. PubMed ID: 22938314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct observation of protein folding in nanoenvironments using a molecular ruler.
    Sarkar R; Shaw AK; Narayanan SS; Dias F; Monkman A; Pal SK
    Biophys Chem; 2006 Aug; 123(1):40-8. PubMed ID: 16697515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvements in mixing time and mixing uniformity in devices designed for studies of protein folding kinetics.
    Yao S; Bakajin O
    Anal Chem; 2007 Aug; 79(15):5753-9. PubMed ID: 17583912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of a microfluidic mixer for studying protein folding kinetics.
    Hertzog DE; Ivorra B; Mohammadi B; Bakajin O; Santiago JG
    Anal Chem; 2006 Jul; 78(13):4299-306. PubMed ID: 16808436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin of the conformational heterogeneity of cardiolipin-bound cytochrome C.
    Hong Y; Muenzner J; Grimm SK; Pletneva EV
    J Am Chem Soc; 2012 Nov; 134(45):18713-23. PubMed ID: 23066867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Achieving uniform mixing in a microfluidic device: hydrodynamic focusing prior to mixing.
    Park HY; Qiu X; Rhoades E; Korlach J; Kwok LW; Zipfel WR; Webb WW; Pollack L
    Anal Chem; 2006 Jul; 78(13):4465-73. PubMed ID: 16808455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast heme dynamics in ferrous versus ferric cytochrome c studied by time-resolved resonance Raman and transient absorption spectroscopy.
    Negrerie M; Cianetti S; Vos MH; Martin JL; Kruglik SG
    J Phys Chem B; 2006 Jun; 110(25):12766-81. PubMed ID: 16800612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct observation of ligand dynamics in cytochrome c.
    Thielges MC; Zimmermann J; Romesberg FE
    J Am Chem Soc; 2009 May; 131(17):6054-5. PubMed ID: 19361220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.