These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

773 related articles for article (PubMed ID: 25938973)

  • 1. Microfluidic impedance flow cytometry enabling high-throughput single-cell electrical property characterization.
    Chen J; Xue C; Zhao Y; Chen D; Wu MH; Wang J
    Int J Mol Sci; 2015 Apr; 16(5):9804-30. PubMed ID: 25938973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single Cell Electrical Characterization Techniques.
    Mansor MA; Ahmad MR
    Int J Mol Sci; 2015 Jun; 16(6):12686-712. PubMed ID: 26053399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Droplet Microfluidics Enabling High-Throughput Single-Cell Analysis.
    Wen N; Zhao Z; Fan B; Chen D; Men D; Wang J; Chen J
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27399651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Efficiency Single-Cell Electrical Impedance Spectroscopy.
    Feng Y; Huang L; Zhao P; Liang F; Wang W
    Methods Mol Biol; 2023; 2644():81-97. PubMed ID: 37142917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Microfluidic Systems Enabling High-Throughput Single-Cell Protein Characterization.
    Fan B; Li X; Chen D; Peng H; Wang J; Chen J
    Sensors (Basel); 2016 Feb; 16(2):232. PubMed ID: 26891303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic impedance-based flow cytometry.
    Cheung KC; Di Berardino M; Schade-Kampmann G; Hebeisen M; Pierzchalski A; Bocsi J; Mittag A; Tárnok A
    Cytometry A; 2010 Jul; 77(7):648-66. PubMed ID: 20583276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous microfluidic 3D focusing enabling microflow cytometry for single-cell analysis.
    Yan S; Yuan D
    Talanta; 2021 Jan; 221():121401. PubMed ID: 33076055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crossing constriction channel-based microfluidic cytometry capable of electrically phenotyping large populations of single cells.
    Zhang Y; Zhao Y; Chen D; Wang K; Wei Y; Xu Y; Huang C; Wang J; Chen J
    Analyst; 2019 Jan; 144(3):1008-1015. PubMed ID: 30648705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developments in label-free microfluidic methods for single-cell analysis and sorting.
    Carey TR; Cotner KL; Li B; Sohn LL
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2019 Jan; 11(1):e1529. PubMed ID: 29687965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput microfluidic imaging flow cytometry.
    Stavrakis S; Holzner G; Choo J; deMello A
    Curr Opin Biotechnol; 2019 Feb; 55():36-43. PubMed ID: 30118968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of microfluidic impedance cytometry enabling the quantification of specific membrane capacitance and cytoplasm conductivity from 100,000 single cells.
    Zhao Y; Wang K; Chen D; Fan B; Xu Y; Ye Y; Wang J; Chen J; Huang C
    Biosens Bioelectron; 2018 Jul; 111():138-143. PubMed ID: 29665553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Digital Microfluidics for Manipulation and Analysis of a Single Cell.
    He JL; Chen AT; Lee JH; Fan SK
    Int J Mol Sci; 2015 Sep; 16(9):22319-32. PubMed ID: 26389890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvements in high-throughput, high-content analysis of single cells.
    Tárnok A
    Cytometry A; 2013 Apr; 83(4):331-2. PubMed ID: 23520155
    [No Abstract]   [Full Text] [Related]  

  • 14. Advance of microfluidic flow cytometry enabling high-throughput characterization of single-cell electrical and structural properties.
    Huang X; Chen X; Tan H; Wang M; Li Y; Wei Y; Zhang J; Chen D; Wang J; Li Y; Chen J
    Cytometry A; 2024 Feb; 105(2):139-145. PubMed ID: 37814588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Positional dependence of particles and cells in microfluidic electrical impedance flow cytometry: origin, challenges and opportunities.
    Daguerre H; Solsona M; Cottet J; Gauthier M; Renaud P; Bolopion A
    Lab Chip; 2020 Oct; 20(20):3665-3689. PubMed ID: 32914827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic Impedance Cytometry Enabled One-Step Sample Preparation for Efficient Single-Cell Mass Spectrometry.
    Zhu J; Pan S; Chai H; Zhao P; Feng Y; Cheng Z; Zhang S; Wang W
    Small; 2024 Jun; 20(26):e2310700. PubMed ID: 38483007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developments of Conventional and Microfluidic Flow Cytometry Enabling High-Throughput Characterization of Single Cells.
    Wang M; Liang H; Chen X; Chen D; Wang J; Zhang Y; Chen J
    Biosensors (Basel); 2022 Jun; 12(7):. PubMed ID: 35884246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Simple and Robust Event-Detection Algorithm for Single-Cell Impedance Cytometry.
    Caselli F; Bisegna P
    IEEE Trans Biomed Eng; 2016 Feb; 63(2):415-22. PubMed ID: 26241968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An impedance flow cytometry with integrated dual microneedle for electrical properties characterization of single cell.
    Mansor MA; Ahmad MR; Petrů M; Rahimian Koloor SS
    Artif Cells Nanomed Biotechnol; 2023 Dec; 51(1):371-383. PubMed ID: 37548425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Microfluidic Device Integrating Impedance Flow Cytometry and Electric Impedance Spectroscopy for High-Efficiency Single-Cell Electrical Property Measurement.
    Feng Y; Huang L; Zhao P; Liang F; Wang W
    Anal Chem; 2019 Dec; 91(23):15204-15212. PubMed ID: 31702127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.