BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 25938976)

  • 1. A theoretical and experimental approach for correlating nanoparticle structure and electrocatalytic activity.
    Anderson RM; Yancey DF; Zhang L; Chill ST; Henkelman G; Crooks RM
    Acc Chem Res; 2015 May; 48(5):1351-7. PubMed ID: 25938976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unusual Activity Trend for CO Oxidation on Pd(x)Au(140-x)@Pt Core@Shell Nanoparticle Electrocatalysts.
    Luo L; Zhang L; Henkelman G; Crooks RM
    J Phys Chem Lett; 2015 Jul; 6(13):2562-8. PubMed ID: 26266734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of Pt-shell nanoparticles with alloy cores for the oxygen reduction reaction.
    Zhang L; Iyyamperumal R; Yancey DF; Crooks RM; Henkelman G
    ACS Nano; 2013 Oct; 7(10):9168-72. PubMed ID: 24041224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An experimental and theoretical investigation of the inversion of pd@pt core@shell dendrimer-encapsulated nanoparticles.
    Anderson RM; Zhang L; Loussaert JA; Frenkel AI; Henkelman G; Crooks RM
    ACS Nano; 2013 Oct; 7(10):9345-53. PubMed ID: 24088084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient electrocatalytic oxidation of formic acid using Au@Pt dendrimer-encapsulated nanoparticles.
    Iyyamperumal R; Zhang L; Henkelman G; Crooks RM
    J Am Chem Soc; 2013 Apr; 135(15):5521-4. PubMed ID: 23565858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical synthesis and electrocatalytic properties of Au@Pt dendrimer-encapsulated nanoparticles.
    Yancey DF; Carino EV; Crooks RM
    J Am Chem Soc; 2010 Aug; 132(32):10988-9. PubMed ID: 20698651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-selective Cu deposition on Pt dendrimer-encapsulated nanoparticles: correlation of theory and experiment.
    Carino EV; Kim HY; Henkelman G; Crooks RM
    J Am Chem Soc; 2012 Mar; 134(9):4153-62. PubMed ID: 22356476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural analysis of PdAu dendrimer-encapsulated bimetallic nanoparticles.
    Weir MG; Knecht MR; Frenkel AI; Crooks RM
    Langmuir; 2010 Jan; 26(2):1137-46. PubMed ID: 19839631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined Experimental and Theoretical Study of the Structure of AuPt Nanoparticles Prepared by Galvanic Exchange.
    Lapp AS; Duan Z; Henkelman G; Crooks RM
    Langmuir; 2019 Dec; 35(50):16496-16507. PubMed ID: 31804090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A density functional theory approach to mushroom-like platinum clusters on palladium-shell over Au core nanoparticles for high electrocatalytic activity.
    Duan S; Fang PP; Fan FR; Broadwell I; Yang FZ; Wu DY; Ren B; Amatore C; Luo Y; Xu X; Tian ZQ
    Phys Chem Chem Phys; 2011 Mar; 13(12):5441-9. PubMed ID: 21350738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the composition of core-shell Au-Pt nanoparticle electrocatalysts for the oxygen reduction reaction.
    Li X; Liu J; He W; Huang Q; Yang H
    J Colloid Interface Sci; 2010 Apr; 344(1):132-6. PubMed ID: 20060983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles.
    Nilekar AU; Alayoglu S; Eichhorn B; Mavrikakis M
    J Am Chem Soc; 2010 Jun; 132(21):7418-28. PubMed ID: 20459102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocatalyst superior to Pt for oxygen reduction reactions: the case of core/shell Ag(Au)/CuPd nanoparticles.
    Guo S; Zhang X; Zhu W; He K; Su D; Mendoza-Garcia A; Ho SF; Lu G; Sun S
    J Am Chem Soc; 2014 Oct; 136(42):15026-33. PubMed ID: 25279704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Pt@Cu core@shell dendrimer-encapsulated nanoparticles synthesized by Cu underpotential deposition.
    Carino EV; Crooks RM
    Langmuir; 2011 Apr; 27(7):4227-35. PubMed ID: 21384847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimum nanoparticles for electrocatalytic oxygen reduction: the size, shape and new design.
    Wei GF; Liu ZP
    Phys Chem Chem Phys; 2013 Nov; 15(42):18555-61. PubMed ID: 24077215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A combined density functional and x-ray diffraction study of Pt nanoparticle structure.
    Welborn M; Tang W; Ryu J; Petkov V; Henkelman G
    J Chem Phys; 2011 Jul; 135(1):014503. PubMed ID: 21744906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activating Pd by morphology tailoring for oxygen reduction.
    Xiao L; Zhuang L; Liu Y; Lu J; Abruña HD
    J Am Chem Soc; 2009 Jan; 131(2):602-8. PubMed ID: 19108685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First principles computational study on the electrochemical stability of Pt-Co nanocatalysts.
    Noh SH; Seo MH; Seo JK; Fischer P; Han B
    Nanoscale; 2013 Sep; 5(18):8625-33. PubMed ID: 23897215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances.
    Kuai L; Geng B; Wang S; Sang Y
    Chemistry; 2012 Jul; 18(30):9423-9. PubMed ID: 22714952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.