BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 25938988)

  • 21. Skeleton/skin structured (RGO/CNTs)@PANI composite fiber electrodes with excellent mechanical and electrochemical performance for all-solid-state symmetric supercapacitors.
    Liu D; Du P; Wei W; Wang H; Wang Q; Liu P
    J Colloid Interface Sci; 2018 Mar; 513():295-303. PubMed ID: 29156237
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Graphene oxide-dispersed pristine CNTs support for MnO2 nanorods as high performance supercapacitor electrodes.
    You B; Li N; Zhu H; Zhu X; Yang J
    ChemSusChem; 2013 Mar; 6(3):474-80. PubMed ID: 23417925
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pencil-Drawing Skin-Mountable Micro-Supercapacitors.
    Zhu S; Li Y; Zhu H; Ni J; Li Y
    Small; 2019 Jan; 15(3):e1804037. PubMed ID: 30430739
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functionalized graphene hydrogel-based high-performance supercapacitors.
    Xu Y; Lin Z; Huang X; Wang Y; Huang Y; Duan X
    Adv Mater; 2013 Oct; 25(40):5779-84. PubMed ID: 23900931
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graphene-Based Nanomaterials for Flexible and Wearable Supercapacitors.
    Huang L; Santiago D; Loyselle P; Dai L
    Small; 2018 Oct; 14(43):e1800879. PubMed ID: 30009468
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synergistic fusion of vertical graphene nanosheets and carbon nanotubes for high-performance supercapacitor electrodes.
    Seo DH; Yick S; Han ZJ; Fang JH; Ostrikov KK
    ChemSusChem; 2014 Aug; 7(8):2317-24. PubMed ID: 24828784
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Soft Hybrid Scaffold (SHS) Strategy for Realization of Ultrahigh Energy Density of Wearable Aqueous Supercapacitors.
    Shang J; Huang Q; Wang L; Yang Y; Li P; Zheng Z
    Adv Mater; 2020 Jan; 32(4):e1907088. PubMed ID: 31788889
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of bacteria promoted reduced graphene oxide-nickel sulfide networks for advanced supercapacitors.
    Zhang H; Yu X; Guo D; Qu B; Zhang M; Li Q; Wang T
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7335-40. PubMed ID: 23751359
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage.
    El-Kady MF; Kaner RB
    Nat Commun; 2013; 4():1475. PubMed ID: 23403576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor.
    Lee JS; Kim SI; Yoon JC; Jang JH
    ACS Nano; 2013 Jul; 7(7):6047-55. PubMed ID: 23782238
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High capacitive performance of flexible and binder-free graphene-polypyrrole composite membrane based on in situ reduction of graphene oxide and self-assembly.
    Zhang J; Chen P; Oh BH; Chan-Park MB
    Nanoscale; 2013 Oct; 5(20):9860-6. PubMed ID: 23974163
    [TBL] [Abstract][Full Text] [Related]  

  • 32. From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles.
    Huang Y; Hu H; Huang Y; Zhu M; Meng W; Liu C; Pei Z; Hao C; Wang Z; Zhi C
    ACS Nano; 2015 May; 9(5):4766-75. PubMed ID: 25842997
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flexible Asymmetric Threadlike Supercapacitors Based on NiCo
    Wang Q; Ma Y; Wu Y; Zhang D; Miao M
    ChemSusChem; 2017 Apr; 10(7):1427-1435. PubMed ID: 28195423
    [TBL] [Abstract][Full Text] [Related]  

  • 34. β-Cobalt sulfide nanoparticles decorated graphene composite electrodes for high capacity and power supercapacitors.
    Qu B; Chen Y; Zhang M; Hu L; Lei D; Lu B; Li Q; Wang Y; Chen L; Wang T
    Nanoscale; 2012 Dec; 4(24):7810-6. PubMed ID: 23147355
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of graphene for electrochemical energy storage.
    Raccichini R; Varzi A; Passerini S; Scrosati B
    Nat Mater; 2015 Mar; 14(3):271-9. PubMed ID: 25532074
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single-Layer Graphene-Based Transparent and Flexible Multifunctional Electronics for Self-Charging Power and Touch-Sensing Systems.
    Chun S; Son W; Lee G; Kim SH; Park JW; Kim SJ; Pang C; Choi C
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9301-9308. PubMed ID: 30758935
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films.
    Xu Y; Lin Z; Huang X; Liu Y; Huang Y; Duan X
    ACS Nano; 2013 May; 7(5):4042-9. PubMed ID: 23550832
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering the electrochemical capacitive properties of graphene sheets in ionic-liquid electrolytes by correct selection of anions.
    Shi M; Kou S; Yan X
    ChemSusChem; 2014 Nov; 7(11):3053-62. PubMed ID: 25146489
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fully Printed Ultraflexible Supercapacitor Supported by a Single-Textile Substrate.
    Zhang H; Qiao Y; Lu Z
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32317-32323. PubMed ID: 27933835
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-Healing and Shape-Editable Wearable Supercapacitors Based on Highly Stretchable Hydrogel Electrolytes.
    Zhao Y; Liang Q; Mugo SM; An L; Zhang Q; Lu Y
    Adv Sci (Weinh); 2022 Aug; 9(24):e2201039. PubMed ID: 35754306
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.